Mots-clés : convex domain
@article{UFA_2024_16_3_a1,
author = {L. I. Gafiyatullina and R. G. Salakhudinov},
title = {Estimates for torsional rigidity of convex domain via new geometric characteristics},
journal = {Ufa mathematical journal},
pages = {21--39},
year = {2024},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a1/}
}
TY - JOUR AU - L. I. Gafiyatullina AU - R. G. Salakhudinov TI - Estimates for torsional rigidity of convex domain via new geometric characteristics JO - Ufa mathematical journal PY - 2024 SP - 21 EP - 39 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a1/ LA - en ID - UFA_2024_16_3_a1 ER -
L. I. Gafiyatullina; R. G. Salakhudinov. Estimates for torsional rigidity of convex domain via new geometric characteristics. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 21-39. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a1/
[1] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton, 1951 | MR | MR | Zbl
[2] S.P. Timoshenko, History of strength of materials. With a brief account of the history of theory of elasticity and theory of structures, McGraw–Hill Publishing Company, Ltd., London, 1954 | MR | Zbl
[3] L.E. Payne, “Some isoperimetric inequalities in the torsional problem for multiply connected regions”, Stud. Math. Anal. related Topics, Essays in Honor of G. Polya, Standford University Press, California, 1962, 270–280 | MR
[4] E. Makai, “On the principal frequency of a membrane and the torsional rigidity of a beam”, Stud. Math. Anal. related Topics, Essays in Honor of G. Polya, Standford University Press, California, 1962, 227–231 | MR
[5] F.G. Avkhadiev, “Solution of the generalized Saint Venant problem”, Sb. Math., 189:12 (1998), 1739–1748 | DOI | DOI | MR | Zbl
[6] L.I. Gafiyatullina, R.G. Salakhudinov, “A generalization of the Polia — Szego and Makai inequalities for torsional rigidity”, Russ. Math., 65:11 (2021), 76–80 | DOI | MR | Zbl
[7] R.G. Salakhudinov, L.I. Gafiyatullina, “Two-Sided Estimate for the Torsional Rigidity of Convex Domain Generalizing the Polya-Szego and Makai Inequalities”, Lobachevskii J. Math., 43:10 (2022), 3020–3032 | DOI | MR | Zbl
[8] E. Makai, “A proof of Saint-Venant's theorem on torsional rigidity”, Acta Math. Acad. Sci. Hung., 17 (1966), 419–422 | DOI | MR | Zbl
[9] R.G. Salakhudinov, “Isoperimetric properties of Euclidean boundary moments of a simply connected domain”, Russ. Math., 57:8 (2013), 57–69 | DOI | MR | Zbl
[10] R.G. Salahudinov, “Refined inequalities for euclidean moments of a domain with respect to its boundary”, SIAM J. Math. Anal., 44:4 (2012), 2949–2961 | DOI | MR
[11] R.G. Salahudinov, “Some properties of functionals on level sets”, Ufa Math. J., 11:2 (2019), 114–124 | DOI | MR | Zbl
[12] R.G. Salahudinov, “Torsional rigidity and euclidian moments of a convex domain”, Q. J. Math., 67:4 (2016), 669–681 | MR
[13] V.M. Tikhomirov, Stories about maxima and minima, American Mathematical Society, Providence, RI; Mathematical Association of America, Washington, DC, 1990 | MR | Zbl