Estimates for torsional rigidity of convex domain via new geometric characteristics
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 21-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce new geometric characteristics of a convex domain with finite boundary length and provide an algorithm for calculating them. A series of isoperimetric inequalities between new functionals and known integral characteristics of the domain are proved. Some of the inequalities have a wide class of extremal domains. We consider applications of new characteristics to the problem on estimating the torsional rigidity of a convex domain.
Keywords:
function of distance to the boundary, torsional rigidity, isoperimetric inequality, extremal domain.
Mots-clés : convex domain
Mots-clés : convex domain
@article{UFA_2024_16_3_a1,
author = {L. I. Gafiyatullina and R. G. Salakhudinov},
title = {Estimates for torsional rigidity of convex domain via new geometric characteristics},
journal = {Ufa mathematical journal},
pages = {21--39},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a1/}
}
TY - JOUR AU - L. I. Gafiyatullina AU - R. G. Salakhudinov TI - Estimates for torsional rigidity of convex domain via new geometric characteristics JO - Ufa mathematical journal PY - 2024 SP - 21 EP - 39 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a1/ LA - en ID - UFA_2024_16_3_a1 ER -
L. I. Gafiyatullina; R. G. Salakhudinov. Estimates for torsional rigidity of convex domain via new geometric characteristics. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 21-39. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a1/