Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 1-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model Schrödinger operator with a constant coefficient on the unit segment and the Dirichlet and Neumann condition on opposite ends with a small translation in the free term. The value of the translation is small parameter, which can be both positive and negative. The main result is the spectral asymptotics for the eigenvalues and eigenfunctions with an estimate for the error term, which is uniform in the small parameter. For finitely many first eigenvalues and associated eigenfunctions we provide asymptotics in the small parameter. We prove that each eigenvalue is simple, and the system of eigenfunctions forms a basis in the space $L_2(0, 1).$
Keywords: Schrödinger operator on a segment, small translation, uniform spectral asymptotics.
@article{UFA_2024_16_3_a0,
     author = {D. I. Borisov and D. M. Polyakov},
     title = {Uniform asymptotics for eigenvalues of model {Schr\"odinger} operator with small translation},
     journal = {Ufa mathematical journal},
     pages = {1--20},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/}
}
TY  - JOUR
AU  - D. I. Borisov
AU  - D. M. Polyakov
TI  - Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation
JO  - Ufa mathematical journal
PY  - 2024
SP  - 1
EP  - 20
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/
LA  - en
ID  - UFA_2024_16_3_a0
ER  - 
%0 Journal Article
%A D. I. Borisov
%A D. M. Polyakov
%T Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation
%J Ufa mathematical journal
%D 2024
%P 1-20
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/
%G en
%F UFA_2024_16_3_a0
D. I. Borisov; D. M. Polyakov. Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 1-20. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/

[1] A.L. Skubachevskii, Elliptic functional differential equations and applications, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[2] G.A. Kamenskii, Extrema of nonlocal functional and boundary value problems for functional differential equations, Nova Science Publishers, New York, 2007 | MR | Zbl

[3] A.L. Skubachevskii, “Boundary–value problems for elliptic functional-differential equations and their applications”, Russ. Math. Surv., 71:5 (2016), 801–906 | DOI | DOI | MR | Zbl

[4] V. V. Liiko, A. L. Skubachevskii, “Mixed problems for strongly elliptic differential-difference equations in a cylinder”, Math. Notes, 107:5 (2020), 770–790 | DOI | DOI | MR | Zbl

[5] R. Yu. Vorotnikov, A. L. Skubachevskii, “Smoothness of generalized eigenfunctions of differential–difference operators on a finite interval”, Math. Notes, 114:5 (2023), 1002–1020 | DOI | DOI | MR | Zbl

[6] A.B. Muravnik, “On the Cauchy problem for differential-difference parabolic equations with high–order nonlocal terms of general kind”, Discrete Contin. Dyn. Syst., 16 (2006), 541–561 | DOI | MR | Zbl

[7] L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, J. Math. Sci., 223:4 (2017), 351–493 | DOI | MR | Zbl

[8] V.A. Marchenko, Spectral Theory of Sturm–Liouville Operators, Naukova Dumka, Kiev, 1977 (in Russian) | MR

[9] B.M. Levitan and I.S. Sargsjan, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Amer. Math. Soc., Providence, R.I., 1975 | MR | Zbl

[10] A.A. Shkalikov, “The limit behavior of the spectrum for large parameter values in a model problem”, Math. Notes, 62:6 (1997), 796–799 | DOI | DOI | MR | Zbl

[11] S.N. Tumanov, A.A. Shkalikov, “On the limit behaviour of the spectrum of a model problem for the Orr–Sommerfeld equation with Poiseuille profile”, Izv. Math., 66:4 (2002), 829–856 | DOI | DOI | MR | Zbl

[12] S.A. Stepin, “A model of transition from discrete spectrum to continuous one in singular perturbation theory”, Fundam. Prikl. Mat., 3:4 (1997), 1199–1227 (in Russian) | MR | Zbl

[13] C.S. Morawetz, “The eigenvalues of some stability problems involving viscosity”, J. Rat. Mech. Anal., 1 (1952), 579–603 | MR | Zbl

[14] A.V. D'yachenko and A.A. Shkalikov, “On a model problem for the Orr–Sommerfeld equation with linear profile”, Funct. Anal. Appl., 36:3 (2002), 228–232 | DOI | DOI | MR | Zbl

[15] A.A. Shkalikov, “Spectral Portraits of the Orr–Sommerfeld Operator with Large Reynolds Numbers”, J. Math. Sci., 124:6 (2004), 5417–5441 | DOI | MR | Zbl

[16] S.N. Tumanov and A.A. Shkalikov, “The limit spectral graph in semiclassical approximation for the Sturm–Liouville problem with complex polynomial potential”, Dokl. Math., 92:3 (2015), 773–777 | DOI | DOI | MR | Zbl

[17] S.N. Tumanov, A.A. Shkalikov, “Spectral portraits in the semi-classical approximation of the Sturm–Liouville problem with a complex potential”, J. Phys. Conf. Ser., 1141 (2018), 012155 | DOI

[18] Kh.K. Ishkin and R.I. Marvanov, “On localization conditions for spectrum of model operator for Orr–Sommerfeld equation”, Ufa Math. J., 12:4 (2020), 64–77 | DOI | MR | MR | Zbl

[19] D.I. Borisov, D.M. Polyakov, “Resolvent convergence for differential–difference operators with small variable translations”, Mathematics, 11:20 (2023), 4260 | DOI

[20] T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag, Berlin, 1976 | MR | MR | Zbl

[21] R. Narasimhan, Analysis on real and complex manifolds, North–Holland, Amsterdam, 1985 | MR | Zbl

[22] D.I. Borisov, D.M. Polyakov, “Spectral asymptotics for one–dimensional Schrödinger operator on the segment with translation in free term and Dirichlet condition”, Izv. Ross. Akad. Nauk, Ser. Mat.

[23] D.I. Borisov, D.M. Polyakov, “Asymptotics for eigenvalues of Schrödinger operator with small translation and Dirichlet condition”, Dokl. Akad. Nauk, Ross. Akad. Nauk, 517:3 (2024) | MR