@article{UFA_2024_16_3_a0,
author = {D. I. Borisov and D. M. Polyakov},
title = {Uniform asymptotics for eigenvalues of model {Schr\"odinger} operator with small translation},
journal = {Ufa mathematical journal},
pages = {1--20},
year = {2024},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/}
}
TY - JOUR AU - D. I. Borisov AU - D. M. Polyakov TI - Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation JO - Ufa mathematical journal PY - 2024 SP - 1 EP - 20 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/ LA - en ID - UFA_2024_16_3_a0 ER -
D. I. Borisov; D. M. Polyakov. Uniform asymptotics for eigenvalues of model Schrödinger operator with small translation. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 1-20. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a0/
[1] A.L. Skubachevskii, Elliptic functional differential equations and applications, Birkhäuser Verlag, Basel, 1997 | MR | Zbl
[2] G.A. Kamenskii, Extrema of nonlocal functional and boundary value problems for functional differential equations, Nova Science Publishers, New York, 2007 | MR | Zbl
[3] A.L. Skubachevskii, “Boundary–value problems for elliptic functional-differential equations and their applications”, Russ. Math. Surv., 71:5 (2016), 801–906 | DOI | DOI | MR | Zbl
[4] V. V. Liiko, A. L. Skubachevskii, “Mixed problems for strongly elliptic differential-difference equations in a cylinder”, Math. Notes, 107:5 (2020), 770–790 | DOI | DOI | MR | Zbl
[5] R. Yu. Vorotnikov, A. L. Skubachevskii, “Smoothness of generalized eigenfunctions of differential–difference operators on a finite interval”, Math. Notes, 114:5 (2023), 1002–1020 | DOI | DOI | MR | Zbl
[6] A.B. Muravnik, “On the Cauchy problem for differential-difference parabolic equations with high–order nonlocal terms of general kind”, Discrete Contin. Dyn. Syst., 16 (2006), 541–561 | DOI | MR | Zbl
[7] L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, J. Math. Sci., 223:4 (2017), 351–493 | DOI | MR | Zbl
[8] V.A. Marchenko, Spectral Theory of Sturm–Liouville Operators, Naukova Dumka, Kiev, 1977 (in Russian) | MR
[9] B.M. Levitan and I.S. Sargsjan, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Amer. Math. Soc., Providence, R.I., 1975 | MR | Zbl
[10] A.A. Shkalikov, “The limit behavior of the spectrum for large parameter values in a model problem”, Math. Notes, 62:6 (1997), 796–799 | DOI | DOI | MR | Zbl
[11] S.N. Tumanov, A.A. Shkalikov, “On the limit behaviour of the spectrum of a model problem for the Orr–Sommerfeld equation with Poiseuille profile”, Izv. Math., 66:4 (2002), 829–856 | DOI | DOI | MR | Zbl
[12] S.A. Stepin, “A model of transition from discrete spectrum to continuous one in singular perturbation theory”, Fundam. Prikl. Mat., 3:4 (1997), 1199–1227 (in Russian) | MR | Zbl
[13] C.S. Morawetz, “The eigenvalues of some stability problems involving viscosity”, J. Rat. Mech. Anal., 1 (1952), 579–603 | MR | Zbl
[14] A.V. D'yachenko and A.A. Shkalikov, “On a model problem for the Orr–Sommerfeld equation with linear profile”, Funct. Anal. Appl., 36:3 (2002), 228–232 | DOI | DOI | MR | Zbl
[15] A.A. Shkalikov, “Spectral Portraits of the Orr–Sommerfeld Operator with Large Reynolds Numbers”, J. Math. Sci., 124:6 (2004), 5417–5441 | DOI | MR | Zbl
[16] S.N. Tumanov and A.A. Shkalikov, “The limit spectral graph in semiclassical approximation for the Sturm–Liouville problem with complex polynomial potential”, Dokl. Math., 92:3 (2015), 773–777 | DOI | DOI | MR | Zbl
[17] S.N. Tumanov, A.A. Shkalikov, “Spectral portraits in the semi-classical approximation of the Sturm–Liouville problem with a complex potential”, J. Phys. Conf. Ser., 1141 (2018), 012155 | DOI
[18] Kh.K. Ishkin and R.I. Marvanov, “On localization conditions for spectrum of model operator for Orr–Sommerfeld equation”, Ufa Math. J., 12:4 (2020), 64–77 | DOI | MR | MR | Zbl
[19] D.I. Borisov, D.M. Polyakov, “Resolvent convergence for differential–difference operators with small variable translations”, Mathematics, 11:20 (2023), 4260 | DOI
[20] T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag, Berlin, 1976 | MR | MR | Zbl
[21] R. Narasimhan, Analysis on real and complex manifolds, North–Holland, Amsterdam, 1985 | MR | Zbl
[22] D.I. Borisov, D.M. Polyakov, “Spectral asymptotics for one–dimensional Schrödinger operator on the segment with translation in free term and Dirichlet condition”, Izv. Ross. Akad. Nauk, Ser. Mat.
[23] D.I. Borisov, D.M. Polyakov, “Asymptotics for eigenvalues of Schrödinger operator with small translation and Dirichlet condition”, Dokl. Akad. Nauk, Ross. Akad. Nauk, 517:3 (2024) | MR