@article{UFA_2024_16_2_a8,
author = {M. Worku and L. T. Wesen},
title = {Generalized composition operators on weighted {Fock} spaces},
journal = {Ufa mathematical journal},
pages = {104--116},
year = {2024},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a8/}
}
M. Worku; L. T. Wesen. Generalized composition operators on weighted Fock spaces. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 104-116. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a8/
[1] O. Constantin and J. Á. Peláez, “Integral operators, embedding theorems and a Littlewood-Paley formula on weighted fock spaces”, J. Geom. Anal., 26:2 (2015), 1–46 | MR
[2] S. Li and S. Stević, “Generalized composition operators on Zygmund spaces and Bloch type spaces”, J. Math. Anal. Appl., 338:2 (2008), 1282–1295 | DOI | MR | Zbl
[3] S. Li and S. Stević, “Products of Volterra type operator and composition operator from $H^\infty$ and Bloch spaces to the Zygmund space”, J. Math. Anal. Appl., 345:1 (2008), 40–52 | DOI | MR | Zbl
[4] T. Mengestie, “Generalized Volterra companion operators on Fock spaces”, Potential Anal., 44 (2016), 579–599 | DOI | MR | Zbl
[5] T. Mengestie, “Schatten-class generalized Volterra companion integral operators”, Banch J. Math. Anal., 10:2 (2016), 267–280 | DOI | MR | Zbl
[6] T. Mengestie and S. Ueki, “Integral, differential and multiplication operators on generalized Fock spaces”, Complex Anal. Oper. Theory, 13:3 (2019), 935–958 | DOI | MR | Zbl
[7] T. Mengistie and M. Worku, “Topological structures of generalized Volterra-type integral operators”, Mediterr. J. Math., 15:2 (2018), 1–16 | MR
[8] Z.-C Yang and Z.-H Zhou, “Generalized Volterra-type operators on generalized Fock spaces”, Math. Nachr., 295:8 (2022), 1641–1662 | DOI | MR | Zbl
[9] K. Zhu, Operator theory in function spaces, Mathematical surveys and monographs, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl