On density of polynomials in algebra of holomorphic functions of exponential type on linear Lie group
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 76-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the density of the algebra of polynomials (regular functions) in the algebra of holomorphic functions of exponential type on a complex Lie group arose in the study of duality for Hopf algebras of holomorphic functions. It was shown by the author in [J . Lie Theory, 29:4, 1045–1070 (2019)] that the answer is affirmative in the connected linear case. However, the argument is quite involved and here we present a short proof. It contains two ingredients. The first is the existences of a finite–dimensional faithful holomorphic representation with closed range. To prove it, we use an approach developed by Ðjoković. The second is a lower bound for the norm of a one–parameter matrix subgroup, which is based on some elementary linear algebra consideration. The rest of the proof is close to the original one and uses a decomposition of the group into a semidirect product of a simply connected solvable and linearly complex reductive factors.
Keywords: linear group, holomorphic function of exponential type, submultiplicative weight.
Mots-clés : complex Lie group
@article{UFA_2024_16_2_a5,
     author = {O. Yu. Aristov},
     title = {On density of polynomials in algebra of holomorphic functions of exponential type on linear {Lie} group},
     journal = {Ufa mathematical journal},
     pages = {76--80},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a5/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - On density of polynomials in algebra of holomorphic functions of exponential type on linear Lie group
JO  - Ufa mathematical journal
PY  - 2024
SP  - 76
EP  - 80
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a5/
LA  - en
ID  - UFA_2024_16_2_a5
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T On density of polynomials in algebra of holomorphic functions of exponential type on linear Lie group
%J Ufa mathematical journal
%D 2024
%P 76-80
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a5/
%G en
%F UFA_2024_16_2_a5
O. Yu. Aristov. On density of polynomials in algebra of holomorphic functions of exponential type on linear Lie group. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 76-80. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a5/

[1] S.S. Akbarov, “Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity”, J. Math. Sci., 162:4 (2009), 459–586 | DOI | MR | Zbl

[2] O.Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, functions of exponential type, and homological epimorphisms”, Trans. Moscow Math. Soc., 2020 (2020), 97–114 | MR | Zbl

[3] O.Yu. Aristov, “Holomorphic functions of exponential type on connected complex Lie groups”, J. Lie Theory, 29:4 (2019), 1045–1070 | MR | Zbl

[4] O.Yu. Aristov, “On holomorphic reflexivity conditions for complex Lie groups”, Proc. Edinb. Math. Soc., 64:4 (2021), 800–821 | DOI | MR

[5] D.Z. Ðjoković., “A closure theorem for analytic subgroups of real Lie groups”, Canad. Math. Bull., 19:4 (1976), 435–439 | DOI | MR

[6] J. Hilgert, K.–H. Neeb, Structure and geometry of Lie groups, Springer, Berlin, 2011 | MR

[7] M. Goto, “Faithful representations of Lie groups. II”, Nagoya Math. J., 1 (1950), 91–107 | DOI | MR | Zbl

[8] D.H. Lee, The structure of complex Lie groups, Chapman Hall/CRC, Boca Raton, Florida, 2002 | MR | Zbl

[9] Y. Matsushima, “Espaces homogènes de Stein des groupes de Lie complexes”, Nagoya Math. Journal, 16 (1960), 205–218 | DOI | MR | Zbl

[10] Y. Matsushima, A. Morimoto, “Sur certains espaces fibrés holomorphes sur une variété de Stein”, Bull. Soc. Math. France, 88 (1960), 137–155 | DOI | MR | Zbl

[11] K.–H. Neeb, Holomorphy and convexity in Lie theory, de Gruyter, Berlin, 2000 | MR

[12] Ta–Sun Wu, “A closure theorem for $\sigma$–compact subgroups of locally compact topological groups”, Proc. Amer. Math. Soc., 110:3 (1990), 843–844 | MR | Zbl