Mots-clés : complex Lie group
@article{UFA_2024_16_2_a5,
author = {O. Yu. Aristov},
title = {On density of polynomials in algebra of holomorphic functions of exponential type on linear {Lie} group},
journal = {Ufa mathematical journal},
pages = {76--80},
year = {2024},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a5/}
}
O. Yu. Aristov. On density of polynomials in algebra of holomorphic functions of exponential type on linear Lie group. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 76-80. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a5/
[1] S.S. Akbarov, “Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity”, J. Math. Sci., 162:4 (2009), 459–586 | DOI | MR | Zbl
[2] O.Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, functions of exponential type, and homological epimorphisms”, Trans. Moscow Math. Soc., 2020 (2020), 97–114 | MR | Zbl
[3] O.Yu. Aristov, “Holomorphic functions of exponential type on connected complex Lie groups”, J. Lie Theory, 29:4 (2019), 1045–1070 | MR | Zbl
[4] O.Yu. Aristov, “On holomorphic reflexivity conditions for complex Lie groups”, Proc. Edinb. Math. Soc., 64:4 (2021), 800–821 | DOI | MR
[5] D.Z. Ðjoković., “A closure theorem for analytic subgroups of real Lie groups”, Canad. Math. Bull., 19:4 (1976), 435–439 | DOI | MR
[6] J. Hilgert, K.–H. Neeb, Structure and geometry of Lie groups, Springer, Berlin, 2011 | MR
[7] M. Goto, “Faithful representations of Lie groups. II”, Nagoya Math. J., 1 (1950), 91–107 | DOI | MR | Zbl
[8] D.H. Lee, The structure of complex Lie groups, Chapman Hall/CRC, Boca Raton, Florida, 2002 | MR | Zbl
[9] Y. Matsushima, “Espaces homogènes de Stein des groupes de Lie complexes”, Nagoya Math. Journal, 16 (1960), 205–218 | DOI | MR | Zbl
[10] Y. Matsushima, A. Morimoto, “Sur certains espaces fibrés holomorphes sur une variété de Stein”, Bull. Soc. Math. France, 88 (1960), 137–155 | DOI | MR | Zbl
[11] K.–H. Neeb, Holomorphy and convexity in Lie theory, de Gruyter, Berlin, 2000 | MR
[12] Ta–Sun Wu, “A closure theorem for $\sigma$–compact subgroups of locally compact topological groups”, Proc. Amer. Math. Soc., 110:3 (1990), 843–844 | MR | Zbl