On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 66-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A(U)$ be a set of functions analytic in the circle $U:=\{z\in\mathbb{C}, |z|1\}$ and $B_{2}:=B_{2}(U)$ be the space of the functions $f\in A(U)$ with a finite norm $$\|f\|_{2}=\left(\frac{1}{\pi}\iint_{(U)}|f(z)|^{2} d\sigma\right)^{\frac{1}{2}}\infty,$$ where $d\sigma$ is the area differential and the integral is treated in the Lebesgue sense. In the work we study extremal problems related with the best polynomial approximation of the functions $f\in A(U)$. We obtain a series of sharp theorems and calculate the values of various $n$–widths of some classes of functions defined by the continuity moduluses of $m$th order for the $r$th derivative $f^{(r)}$ in the space $B_2$.
Keywords: Bergman space, extremal problems, $n$–widths.
Mots-clés : polynomial approximation
@article{UFA_2024_16_2_a4,
     author = {M. Sh. Shabozov and D. K. Tukhliev},
     title = {On mean{\textendash}square approximation of functions in {Bergman} space $B_2$ and value of widths of some classes of functions},
     journal = {Ufa mathematical journal},
     pages = {66--75},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a4/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - D. K. Tukhliev
TI  - On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions
JO  - Ufa mathematical journal
PY  - 2024
SP  - 66
EP  - 75
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a4/
LA  - en
ID  - UFA_2024_16_2_a4
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A D. K. Tukhliev
%T On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions
%J Ufa mathematical journal
%D 2024
%P 66-75
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a4/
%G en
%F UFA_2024_16_2_a4
M. Sh. Shabozov; D. K. Tukhliev. On mean–square approximation of functions in Bergman space $B_2$ and value of widths of some classes of functions. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 66-75. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a4/

[1] C. Horowitz, “Zeros of functions in Bergman Space”, Bull. Amer. Math. Soc., 80:4 (1974), 713–714 | DOI | MR | Zbl

[2] M.Z. Dveirin, I.V. Chebanenko, On polynomial approximation in Banach spaces of analytic functions. Theory of mappings and approximation of functions, Naukova Dumka, Kiev, 1983 (in Russian)

[3] A. Pinkus, n-Widths in Approximation Theory, Springer-Verlag, New-York–Tokyo–Berlin–Heidelberg, 1985 | MR | Zbl

[4] Yu.A. Farkov, “Widths of Hardy classes and Bergman classes on the ball in $\mathbb{C}^n$”, Russ. Math. Surv., 45:5 (1990), 229–231 | DOI | MR | Zbl

[5] S.B. Vakarchuk, “On diameters of certain classes of functions analytic in the unit disc. I”, Ukr. Math. J., 42:7 (1990), 769–778 | DOI | MR | MR | Zbl

[6] S.B. Vakarchuk, “On diameters of certain classes of functions analytic in the unit disc. II”, Ukr. Math. J., 42:7 (1990), 907–914 | DOI | MR | Zbl

[7] S.B. Vakarchuk, “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Math. Notes, 57:1 (1995), 21–27 | DOI | MR

[8] M.Sh. Shabozov, “Widths of some classes of analytic functions in the Bergman space”, Dokl. Math., 65:2 (2002), 194–197 | MR

[9] V.A. Abilov, F.V. Abilova, M.K. Kerimov, “Sharp estimates for the convergence rate of Fourier series of complex variable functions in $L_2(D,p(z))$”, Comput. Math., Math. Phys., 50:6 (2010), 946–950 | DOI | MR | Zbl

[10] S.B. Vakarchuk, M.Sh. Shabozov, “The widths of classes of analytic functions in a disc”, Sb. Math., 201:8 (2010), 1091–1110 | DOI | DOI | MR | Zbl

[11] S.B. Vakarchuk, M.B. Vakarchuk, “Inequalities of Kolmogorov type for analytic functions of one and two complex variables and their applications to approximation theory”, Ukr. Math. J., 63:12 (2012), 1795–1819 | DOI | MR | Zbl

[12] S.B. Vakarchuk, B.M. Vakarchuk, “On Kolmogorov type inequalities for analytic in circle functions”, Visnik Dnipropetrovskogo Universitetu. Ser: Matem., 17 (2012), 82–88 (in Russian)

[13] M.Sh. Shabozov, M.S. Saidusainov, “Mean–square approximation of functions of a complex variable by Fourier sums in orthogonal systems”, Trudy IMM UrO RAN, 25, no. 2, 2019, 258–272 (in Russian)

[14] M.Sh. Shabozov, Kh.M. Khuromonov, “On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space”, Russ. Math., 64:2 (2020), 66–83 | DOI | MR | Zbl

[15] M.Sh. Shabozov, N.U. Kadamshoev, “Sharp inequalities between the best root–mean–square approximations of analytic functions in the disk and some smoothness characteristics in the Bergman space”, Math. Notes, 110:2 (2021), 248–260 | DOI | DOI | MR | MR | Zbl

[16] M.Sh. Shabozov, “On the best simultaneous approximation in the Bergman space $B_2$”, Math. Notes, 114:3 (2023), 377–386 | DOI | MR | Zbl

[17] V.I. Smirnov, N.A. Lebedev, Functions of a complex variable. Constructive theory, Iliffe Books Ltd., 1968 | MR | MR | Zbl

[18] V.M. Tikhomirov, Some issues of approximation theory, Moscow State Univ. Publ., M., 1976

[19] L.V. Taikov, “Inequalities containing best approximations and the modulus of continuity of functions in $L_2$”, Mat. Zametki, 20:3 (1976), 433–438 | MR | Zbl