Inductive methods for Hardy inequality on trees
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 36-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Hardy inequality on at most countable rooted tree. The main known criteria in the lower–triangle case for this inequality are two Arcozzi–Rochberg–Sawyer criteria and the capacity criterion. In the survey we show that these two criteria are connected with the criteria for the Hardy inequalities for the sequences, for the Hardy inequality on an interval of the real axis and for the trace inequalities with the Riesz potentials. We provide the examples from the literature, when the trace inequality or another statement is characterized in terms of the validity of the Hardy inequality on the tree. We simplify two known proofs of the Arcozzi–Rochberg–Sawyer criteria, which are based on the Marcinkiewicz interpolation theorem and on the capacity criterion. We provide new proofs for Arcozzi–Rochberg–Sawyer criteria, which are based on the induction in the tree, the inductive formula for the capacity and the formula of integration by parts. The latter of the proofs is written for the Hardy inequality on the tree with a boundary and for the Hardy inequality over the family of all binary cubes. In the diagonal case this proof provides an optimal constant $p$, which coincides with the Bennett constant in the Hardy inequality for the sequences. In the general case we provide a few new inductive criteria for the validity of the Hardy inequality in terms of the existence of a family of functions satisfying an inductive relation. One of these criteria is applied in the proof of a theorem containing additional equivalent conditions for the validity of the Hardy inequality on the trees in the diagonal case.
Keywords: two–weight inequality, rooted tree, Hardy inequality.
@article{UFA_2024_16_2_a3,
     author = {A. I. Parfenov},
     title = {Inductive methods for {Hardy} inequality on trees},
     journal = {Ufa mathematical journal},
     pages = {36--65},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a3/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Inductive methods for Hardy inequality on trees
JO  - Ufa mathematical journal
PY  - 2024
SP  - 36
EP  - 65
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a3/
LA  - en
ID  - UFA_2024_16_2_a3
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Inductive methods for Hardy inequality on trees
%J Ufa mathematical journal
%D 2024
%P 36-65
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a3/
%G en
%F UFA_2024_16_2_a3
A. I. Parfenov. Inductive methods for Hardy inequality on trees. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 36-65. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a3/

[1] A.I. Parfenov, “A discrete norm on a Lipschitz surface and the Sobolev straightening of a boundary”, Sib. Adv. Math, 18:4 (2008), 258–274 | DOI | MR | Zbl

[2] N. Arcozzi, R. Rochberg, E. Sawyer, “Carleson measures for analytic Besov spaces”, Rev. Mat. Iberoam, 18:2 (2002), 443–510 | DOI | MR | Zbl

[3] N. Arcozzi, R. Rochberg, E. Sawyer, “Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls”, Adv. Math., 218:4 (2008), 1107–1180 | DOI | MR | Zbl

[4] N. Arcozzi, R. Rochberg, E.T. Sawyer, B.D. Wick, “Potential theory on trees, graphs and Ahlfors-regular metric spaces”, Potential Anal., 41:2 (2014), 317–366 | DOI | MR | Zbl

[5] N. Arcozzi, I. Holmes, P. Mozolyako, A. Volberg, “Bellman function sitting on a tree”, Int. Math. Res. Not., 2021:16 (2021), 12037–12053 | DOI | MR | Zbl

[6] A.A. Vasil'eva, Estimates for norms of two-weighted summation operators on trees for $1

\infty$, 2015, arXiv: 1509.06974 | MR

[7] A.A. Vasil'eva., “Estimates for norms of two-weighted summation operators on a tree under some restrictions on weights”, Math. Nachr., 288:10 (2015), 1179–1202 | DOI | MR | Zbl

[8] W.D. Evans, D.J. Harris, L. Pick, “Weighted Hardy and Poincaré inequalities on trees”, J. London Math. Soc. II Ser., 52:1 (1995), 121–136 | DOI | MR | Zbl

[9] D.E. Edmunds, W.D. Evans, Hardy operators, function spaces and embeddings, Springer-Verlag, Berlin–Heidelberg, 2004 | MR | Zbl

[10] A.I. Parfenov, “A characterization of multipliers in the Hedberg–Netrusov spaces”, Sib. Adv. Math., 22:1 (2012), 13–40 | DOI | MR | Zbl

[11] A.I. Parfenov, “Criterion for the Sobolev well–posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II”, Sib. Élektron. Mat. Izv., 20:1 (2023), 211–244 (in Russian)

[12] N. Arcozzi, P. Mozolyako, K.-M. Perfekt, G. Sarfatti, Bi-parameter potential theory and Carleson measures for the Dirichlet space on the bidisc, 2018, arXiv: 1811.04990 | MR | Zbl

[13] F.L. Nazarov, S.R. Treil'., “The hunt for a Bellman function: Applications to estimates of singular integral operators and to other classical problems in harmonic analysis”, St. Petersbg. Math. J., 8:5 (1997), 721–824 | MR

[14] P. Mozolyako, G. Psaromiligkos, A. Volberg, P. Zorin-Kranich, “Carleson embedding on the tri-tree and on the tri-disc”, Rev. Mat. Iberoam, 38:7 (2022), 2069–2116 | DOI | MR | Zbl

[15] D.H. Luecking, “Embedding theorems for spaces of analytic functions via Khinchine's inequality”, Mich. Math. J., 40:2 (1993), 333–358 | DOI | MR | Zbl

[16] I.E. Verbitsky, “Nonlinear potentials and trace inequalities”, The Maz'ya anniversary collection, Rostock conference on functional analysis, partial differential equations and applications (Rostock, Germany, 1998), v. 2, Oper. Theory Adv. Appl., 110, eds. J. Rossmann et al., Birkhäuser, Basel, 1999, 323–343 | MR | Zbl

[17] N. Arcozzi, “Carleson measures for analytic Besov spaces: the upper triangle case”, J. Inequal. Pure Appl. Math., 6:1 (2005), 13 | MR | Zbl

[18] C. Cascante, J.M. Ortega, I.E. Verbitsky, “On $L^p$-$L^q$ trace inequalities”, J. Lond. Math. Soc. II Ser., 74:2 (2006), 497–511 | DOI | MR | Zbl

[19] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR | Zbl

[20] V.G. Maz'ya, Sobolev spaces. With applications to elliptic partial differential equations, Springer, Berlin, 2011 | MR | Zbl

[21] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge, 1934 | MR | Zbl

[22] I.S. Kac, M.G. Kreĭn, “Criteria for the discreteness of the spectrum of a singular string”, Izv. Vyssh. Uchebn. Zaved., Mat., 3:2 (1958), 136–153 (in Russian) | MR | Zbl

[23] G. Talenti, “Osservazioni sopra una classe di disuguaglianze”, Rend. Sem. Mat. Fis. Milano, 39 (1969), 171–185 | DOI | MR | Zbl

[24] G. Tomaselli, “A class of inequalities”, Boll. Unione Mat. Ital. IV Ser., 2 (1969), 622–631 | MR | Zbl

[25] T. Walsh, “On weighted norm inequalities for fractional and singular integrals”, Can. J. Math., 23:5 (1971), 907–928 | DOI | MR | Zbl

[26] G. Bennett, “Some elementary inequalities”, Q. J. Math. Oxf. II Ser., 38:4 (1987), 401–425 | DOI | MR | Zbl

[27] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl

[28] D.R. Adams, L.I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1996 | MR

[29] D.A. Stegenga, “Multipliers of the Dirichlet space”, Ill. J. Math., 24:1 (1980), 113–139 | MR | Zbl

[30] R. Kerman, E. Sawyer, “The trace inequality and eigenvalue estimates for Schrödinger operators”, Ann. Inst. Fourier, 36:4 (1986), 207–228 | DOI | MR | Zbl

[31] V.G. Maz'ya, I.E. Verbitsky, “Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers”, Ark. Mat., 33:1 (1995), 81–115 | DOI | MR | Zbl

[32] M. Christ, “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61:2 (1990), 601–628 | DOI | MR | Zbl

[33] Yu.V. Pokornyĭ, O.M. Penkin, V.L. Pryadiev, A.V. Borovskikh, K.P. Lazarev, S.A. Shabrov, Differential equations on geometric graphs, Fizmatlit, M., 2004 (in Russian)

[34] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[35] G. Bennett, “Some elementary inequalities. III”, Q. J. Math. Oxf. II Ser., 42:1 (1991), 149–174 | DOI | MR | Zbl

[36] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice–Hall, Inc., Englewood Cliffs, N. J., 1970 | MR | MR | Zbl