@article{UFA_2024_16_2_a2,
author = {A. V. Bukusheva and S. V. Galaev},
title = {Geometry of {sub{\textendash}Riemannian} manifolds equipped with a semimetric quarter{\textendash}symmetric connection},
journal = {Ufa mathematical journal},
pages = {26--35},
year = {2024},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/}
}
TY - JOUR AU - A. V. Bukusheva AU - S. V. Galaev TI - Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection JO - Ufa mathematical journal PY - 2024 SP - 26 EP - 35 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/ LA - en ID - UFA_2024_16_2_a2 ER -
A. V. Bukusheva; S. V. Galaev. Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 26-35. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/
[1] A.V. Bukusheva, “Non-holonomic Kenmotsu manifolds equipped with generalized Tanaka–Webster connection”, Differ. Geom. Mnogoobr. Figur, 52 (2021), 42–51 (in Russian) | Zbl
[2] A.V. Bukusheva, “Kenmotsu manifolds with a zero curvature distribution”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 64 (2020), 5–14 (in Russian) | MR | Zbl
[3] A.V. Bukusheva, S.V. Galaev, “Sub–Riemannian quasi–statistical structures on non–holonomic Kenmotsu manifolds”, Prikl. Matem. Fizika, 54:4 (2022), 205–212 (in Russian) | DOI
[4] S.V. Galaev, “Almost contact metric spaces with $N$–connection”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 15:3 (2015), 258–264 (in Russian)
[5] S.V. Galaev, “$\nabla^N$–Einstein almost contact metric manifolds”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 70 (2021), 5–15 (in Russian) | Zbl
[6] S.V. Galaev, “Geometry of almost $3$–quasi–Sasakian manifolds of the second kind”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 222, 2023, 3–9 (in Russian) | DOI
[7] P.N. Klepikov, E.D. Rodionov, O.P. Khromova, “Sectional curvature of connections with vectorial torsion”, Russ. Math., 64:6 (2020), 75–79 | DOI | MR | Zbl
[8] V.I. Pan'zhenskii, A.O. Rastrepina, “The left–invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane”, Chebyshevskiĭ Sb., 24:1 (2023), 114–126 (in Russian) | DOI | MR | Zbl
[9] I. Agricola, M. Kraus, “Manifolds with vectorial torsion”, Diff. Geometry and its Applications, 46 (2016), 130–146 | DOI | MR
[10] B. Barua, A.Kr. Ray., “Some properties of a semi–symmetric metric connection in a Riemannian manifold”, Indian Journal of Pure and Applied Mathematics, 16:7 (1985), 736–740 | MR | Zbl
[11] S.C. Biswas, U.C. De., “Quarter–symmetric metric connection in an SP–Sasakian manifold”, Commun. Fac. Sci. Univ. Ank. Series, 46:1–2 (1997), 49–56 | MR | Zbl
[12] A.V. Bukusheva, S.V. Galaev, “Almost contact metric structures defined by connection over distribution”, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 4(53):2 (2011), 13–22 | MR | Zbl
[13] E. Cartan, “Sur les varietes a connexion affine et la theorie de la relative generalisee. Part II”, Ann. Ec. Norm., 42 (1925), 17–88 | MR
[14] I. Ernst, A.S. Galaev, “On Lorentzian connections with parallel skew torsion”, Documenta Mathematica, 27 (2022), 2333–2383 | DOI | MR | Zbl
[15] E. Falbel, C. Gorodski, “On contact sub–riemannian symmetric spaces”, Ann. Sci. Éc. Norm. Supér. (4), 28:5 (1995), 571–589 | DOI | MR | Zbl
[16] T. Friedrich, S. Ivanov, “Parallel spinors and connections with skewsymmetric torsion in string theory”, Asian J. Math., 6:2 (2002), 303–335 | DOI | MR | Zbl
[17] S.V. Galaev, “Intrinsic geometry of almost contact kahlerian manifolds”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 31:1 (2015), 35–46 | MR | Zbl
[18] S.V. Galaev, “Admissible Hyper–Complex Pseudo–Hermitian Structures”, Lobachevskii Journal of Mathematics, 39:1 (2018), 71–76 | DOI | MR | Zbl
[19] S. Golab, “On semi–symmetric and quarter–symmetric linear connections”, Tensor N.S., 29 (1975), 249–254 | MR | Zbl
[20] A. Murcia, C. S. Shahbazi, “Contact metric three manifolds and Lorentzian geometry with torsion in six–dimensional supergravity”, J. Geom. Phys., 158 (2020), 103868 | DOI | MR | Zbl
[21] G. Pitis, Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007 | MR | Zbl
[22] K. Yano, “On semi–symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586 | MR | Zbl
[23] K. Yano, T. Imai, “Quarter–symmetric metric connections and their curvature tensors”, Tensor, N.S., 38 (1982), 13–18 | MR | Zbl