Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 26-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On a sub-Riemannian manifold we introduce a semimetric quarter-symmetric connection by defining intrinsic metric connection and two structural endomorphisms preserving the distribution on a sub-Riemannian manifold. We find conditions ensuring the metric property of the introduced connection. We clarify the nature of the structural endomorphisms of semimetric connection consistent with a sub-Riemannian quasi-static structure defined on non-holonomic Kenmotsu manifold and on almost quasi-Sasakian manifold. We find conditions, under which the mentioned manifolds are Einstein manifolds with respect to the quarter-symmetric connection.
Keywords: quarter-symmetric connection, sub-Riemannian quasi-static structure, non-holonomic Kenmotsu manifold, almost quasi-Sasakian manifold.
@article{UFA_2024_16_2_a2,
     author = {A. V. Bukusheva and S. V. Galaev},
     title = {Geometry of {sub{\textendash}Riemannian} manifolds equipped with a semimetric quarter{\textendash}symmetric connection},
     journal = {Ufa mathematical journal},
     pages = {26--35},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/}
}
TY  - JOUR
AU  - A. V. Bukusheva
AU  - S. V. Galaev
TI  - Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection
JO  - Ufa mathematical journal
PY  - 2024
SP  - 26
EP  - 35
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/
LA  - en
ID  - UFA_2024_16_2_a2
ER  - 
%0 Journal Article
%A A. V. Bukusheva
%A S. V. Galaev
%T Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection
%J Ufa mathematical journal
%D 2024
%P 26-35
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/
%G en
%F UFA_2024_16_2_a2
A. V. Bukusheva; S. V. Galaev. Geometry of sub–Riemannian manifolds equipped with a semimetric quarter–symmetric connection. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 26-35. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/

[1] A.V. Bukusheva, “Non-holonomic Kenmotsu manifolds equipped with generalized Tanaka–Webster connection”, Differ. Geom. Mnogoobr. Figur, 52 (2021), 42–51 (in Russian) | Zbl

[2] A.V. Bukusheva, “Kenmotsu manifolds with a zero curvature distribution”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 64 (2020), 5–14 (in Russian) | MR | Zbl

[3] A.V. Bukusheva, S.V. Galaev, “Sub–Riemannian quasi–statistical structures on non–holonomic Kenmotsu manifolds”, Prikl. Matem. Fizika, 54:4 (2022), 205–212 (in Russian) | DOI

[4] S.V. Galaev, “Almost contact metric spaces with $N$–connection”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 15:3 (2015), 258–264 (in Russian)

[5] S.V. Galaev, “$\nabla^N$–Einstein almost contact metric manifolds”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 70 (2021), 5–15 (in Russian) | Zbl

[6] S.V. Galaev, “Geometry of almost $3$–quasi–Sasakian manifolds of the second kind”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 222, 2023, 3–9 (in Russian) | DOI

[7] P.N. Klepikov, E.D. Rodionov, O.P. Khromova, “Sectional curvature of connections with vectorial torsion”, Russ. Math., 64:6 (2020), 75–79 | DOI | MR | Zbl

[8] V.I. Pan'zhenskii, A.O. Rastrepina, “The left–invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane”, Chebyshevskiĭ Sb., 24:1 (2023), 114–126 (in Russian) | DOI | MR | Zbl

[9] I. Agricola, M. Kraus, “Manifolds with vectorial torsion”, Diff. Geometry and its Applications, 46 (2016), 130–146 | DOI | MR

[10] B. Barua, A.Kr. Ray., “Some properties of a semi–symmetric metric connection in a Riemannian manifold”, Indian Journal of Pure and Applied Mathematics, 16:7 (1985), 736–740 | MR | Zbl

[11] S.C. Biswas, U.C. De., “Quarter–symmetric metric connection in an SP–Sasakian manifold”, Commun. Fac. Sci. Univ. Ank. Series, 46:1–2 (1997), 49–56 | MR | Zbl

[12] A.V. Bukusheva, S.V. Galaev, “Almost contact metric structures defined by connection over distribution”, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 4(53):2 (2011), 13–22 | MR | Zbl

[13] E. Cartan, “Sur les varietes a connexion affine et la theorie de la relative generalisee. Part II”, Ann. Ec. Norm., 42 (1925), 17–88 | MR

[14] I. Ernst, A.S. Galaev, “On Lorentzian connections with parallel skew torsion”, Documenta Mathematica, 27 (2022), 2333–2383 | DOI | MR | Zbl

[15] E. Falbel, C. Gorodski, “On contact sub–riemannian symmetric spaces”, Ann. Sci. Éc. Norm. Supér. (4), 28:5 (1995), 571–589 | DOI | MR | Zbl

[16] T. Friedrich, S. Ivanov, “Parallel spinors and connections with skewsymmetric torsion in string theory”, Asian J. Math., 6:2 (2002), 303–335 | DOI | MR | Zbl

[17] S.V. Galaev, “Intrinsic geometry of almost contact kahlerian manifolds”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 31:1 (2015), 35–46 | MR | Zbl

[18] S.V. Galaev, “Admissible Hyper–Complex Pseudo–Hermitian Structures”, Lobachevskii Journal of Mathematics, 39:1 (2018), 71–76 | DOI | MR | Zbl

[19] S. Golab, “On semi–symmetric and quarter–symmetric linear connections”, Tensor N.S., 29 (1975), 249–254 | MR | Zbl

[20] A. Murcia, C. S. Shahbazi, “Contact metric three manifolds and Lorentzian geometry with torsion in six–dimensional supergravity”, J. Geom. Phys., 158 (2020), 103868 | DOI | MR | Zbl

[21] G. Pitis, Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007 | MR | Zbl

[22] K. Yano, “On semi–symmetric metric connection”, Rev. Roum. Math. Pure Appl., 15 (1970), 1579–1586 | MR | Zbl

[23] K. Yano, T. Imai, “Quarter–symmetric metric connections and their curvature tensors”, Tensor, N.S., 38 (1982), 13–18 | MR | Zbl