Geometry of sub--Riemannian manifolds equipped with a semimetric quarter--symmetric connection
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 26-35
Voir la notice de l'article provenant de la source Math-Net.Ru
On a sub-Riemannian manifold we introduce a semimetric quarter-symmetric connection by defining intrinsic metric connection and two structural endomorphisms preserving the distribution on a sub-Riemannian manifold. We find conditions ensuring the metric property of the introduced connection. We clarify the nature of the structural endomorphisms of semimetric connection consistent with a sub-Riemannian quasi-static structure defined on non-holonomic Kenmotsu manifold and on almost quasi-Sasakian manifold. We find conditions, under which the mentioned manifolds are Einstein manifolds with respect to the quarter-symmetric connection.
Keywords:
quarter-symmetric connection, sub-Riemannian quasi-static structure, non-holonomic Kenmotsu manifold, almost quasi-Sasakian manifold.
@article{UFA_2024_16_2_a2,
author = {A. V. Bukusheva and S. V. Galaev},
title = {Geometry of {sub--Riemannian} manifolds equipped with a semimetric quarter--symmetric connection},
journal = {Ufa mathematical journal},
pages = {26--35},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/}
}
TY - JOUR AU - A. V. Bukusheva AU - S. V. Galaev TI - Geometry of sub--Riemannian manifolds equipped with a semimetric quarter--symmetric connection JO - Ufa mathematical journal PY - 2024 SP - 26 EP - 35 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/ LA - en ID - UFA_2024_16_2_a2 ER -
A. V. Bukusheva; S. V. Galaev. Geometry of sub--Riemannian manifolds equipped with a semimetric quarter--symmetric connection. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 26-35. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a2/