On zeros and Taylor coefficients of entire function of logarithmic growth
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper for an important class of entire functions of zero order we find out straightforward relations between the increasing rate of the sequences of zeroes and the decay rate of the Taylor coefficients. Applying the coefficient characterization of the growth of entire functions and some Tauberian theorems from the convex analysis, we obtain asymptotically sharp estimates relating the zeroes $\lambda_n$ and Hadamard rectified Taylor coefficients $\hat{f_n}$ for entire functions of the logarithmic growth. In the cases, when the function possesses a regular behavior of some kind, the mentioned estimates become asymptotically sharp formulas. For instance, if an entire function has a Borel regular growth and the point $a=0$ is not its Borel exceptional value, then as $n\to\infty$ the asymptotic identity $\ln |\lambda_n|\sim \ln(\hat{f}_{n-1}/\hat{f_n})$ holds true. The result is true for the functions of perfectly regular logarithmic growth and in the latter case we can additionally state that $\ln|\lambda_1\lambda_2 \ldots \lambda_n|\sim\ln\hat{f_n}^{-1}$ as $n\to\infty$.
Keywords: entire function, sequence of zeroes, Hadamard rectified Taylor coefficients, logarithmic order, logarithmic type.
Mots-clés : Taylor coefficients
@article{UFA_2024_16_2_a1,
     author = {G. G. Braichev},
     title = {On zeros and {Taylor} coefficients of entire function of logarithmic growth},
     journal = {Ufa mathematical journal},
     pages = {15--25},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a1/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - On zeros and Taylor coefficients of entire function of logarithmic growth
JO  - Ufa mathematical journal
PY  - 2024
SP  - 15
EP  - 25
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a1/
LA  - en
ID  - UFA_2024_16_2_a1
ER  - 
%0 Journal Article
%A G. G. Braichev
%T On zeros and Taylor coefficients of entire function of logarithmic growth
%J Ufa mathematical journal
%D 2024
%P 15-25
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a1/
%G en
%F UFA_2024_16_2_a1
G. G. Braichev. On zeros and Taylor coefficients of entire function of logarithmic growth. Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 15-25. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a1/

[1] G.G. Braichev, “Joint estimates for zeros and Taylor coefficients of entire function”, Ufa Math. J., 13:1 (2021), 31–45 | DOI | MR | Zbl

[2] G.G. Braichev, “On the connection between the growth of zeros and the decrease of Taylor coefficients of entire functions”, Math. Notes, 113:1 (2023), 27–38 | DOI | DOI | MR | Zbl

[3] B.Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964 | MR | Zbl

[4] E. Borel, Leçons sur les fonctions entières, 2e édition, Gauthier-Villars, Paris, 1921

[5] R.P. Boas, Jr., Entire functions, Acad. Press, New York, 1954 | MR | Zbl

[6] G.G. Braichev, Introduction into growth theory of convex and entire functions, Prometej, M., 2005 (in Russian)

[7] G.G. Braichev, “On Stolz's theorem and its conversion”, Eurasian Math. J., 10:3 (2019), 8–19 | DOI | MR | Zbl

[8] G. Polya, G. Szegö, Problems and theorems in analysis, v. II, Theory of functions, zeros, polynomials, determinants, number theory, geometry, Springer–Verlag, Berlin, 1976 | MR | MR

[9] G. Valiron, “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance règulière”, Annales de la faculté des sciences de Toulouse 3e série, 5 (1913), 117–257 | MR

[10] S. Shah, M. Ishaq, “Maximum modulus and the coefficients of an entire series”, J. Indian Math. Soc., XVI:4 (1952), 177–183 | MR

[11] A.A. Gol'dberg, N.V. Zabolotskij, “Concentration index of a subharmomic function of zeroth order”, Math. Notes, 34:2 (1984), 596–601 | DOI | MR | MR | Zbl

[12] G.G. Braichev, Extremal problems in theory of relative growth of convex and entire functions, Habilitation Thesis, RUDN University, M., 2018 (in Russian)