On embedding into Lorentz spaces (a distant case)
Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 1-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we study an upper bound for a non–increasing non–negative function in the space $L^{p}(0,1)$ by the modulus of continuity of a variable increment $\omega_{p,\alpha,\psi}(f,\delta)$. We show that for the increment of the function of form $f(x)-f(x+hx^{\alpha}\psi(x))$ in the bound the modulus of continuity casts into the form $\omega_{p,\alpha,\psi}\left(f,\frac{\delta}{\delta^{\alpha}\psi\left(\frac{1}{\delta}\right)}\right)$. We also study the embedding $\tilde H_{p,\alpha,\psi}^\omega \subset L(\mu,\nu)(\mu \not= \nu)$ (a distant case). We obtained necessary and sufficient conditions for the parameters $p$, $\alpha$, $\mu$, $\nu$ and the functions $\psi$, $\omega$ for this embedding.
Keywords: classes of functions, modulus of continuity of variable increment, non–increasing permutation of the function, Lorentz spaces.
@article{UFA_2024_16_2_a0,
     author = {A. T. Baidaulet and K. M. Suleimenov},
     title = {On embedding into {Lorentz} spaces (a distant case)},
     journal = {Ufa mathematical journal},
     pages = {1--14},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a0/}
}
TY  - JOUR
AU  - A. T. Baidaulet
AU  - K. M. Suleimenov
TI  - On embedding into Lorentz spaces (a distant case)
JO  - Ufa mathematical journal
PY  - 2024
SP  - 1
EP  - 14
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a0/
LA  - en
ID  - UFA_2024_16_2_a0
ER  - 
%0 Journal Article
%A A. T. Baidaulet
%A K. M. Suleimenov
%T On embedding into Lorentz spaces (a distant case)
%J Ufa mathematical journal
%D 2024
%P 1-14
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a0/
%G en
%F UFA_2024_16_2_a0
A. T. Baidaulet; K. M. Suleimenov. On embedding into Lorentz spaces (a distant case). Ufa mathematical journal, Tome 16 (2024) no. 2, pp. 1-14. http://geodesic.mathdoc.fr/item/UFA_2024_16_2_a0/

[1] A. Zygmund, Trigonometric series, v. 1, 2, University Press, Cambridge, 1959 | MR | Zbl

[2] S.M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, Berlin, 1975 | MR | MR | Zbl

[3] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, New Jersey, 1971 | MR | Zbl

[4] K. Suleimenov, N. Temirgaliev, “On embedding of function classes $H_{\alpha, p}^{\omega}$ into Lorentz spaces”, Anal. Math., 32:4 (2006), 283–317 | DOI | MR | Zbl

[5] N. Temirgaliev, “Embeddings of the classes $H_{p}^{\omega}$ in Lorentz spaces”, Sib. Math. J., 24:2 (1983), 287–298 | DOI | MR | Zbl

[6] P.L. Ul'yanov, “The imbedding of certain function classes $H_{p}^{\omega}$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | Zbl

[7] Z. Ditzian, V. Totik, Moduli of smothness, Springer, New York, 1987 | MR