@article{UFA_2024_16_1_a8,
author = {M. Y. Mir and W. M. Shah and S. L. Wali},
title = {Inequalities for meromorphic functions with prescribed poles},
journal = {Ufa mathematical journal},
pages = {127--137},
year = {2024},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a8/}
}
M. Y. Mir; W. M. Shah; S. L. Wali. Inequalities for meromorphic functions with prescribed poles. Ufa mathematical journal, Tome 16 (2024) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a8/
[1] S. N. Bernstein, “Sur la limitation des dérivées des polynomes”, C. R. Acad. Sci. Paris, 190:1 (1930), 338–340
[2] P. D. Lax., “Proof of a conjecture of P. Erdös on the derivative of a polynomial”, Bull. Amer. Math. Soc., 50:1 (1944), 509–513 | DOI | MR | Zbl
[3] P. Turán, “Über die Ableitung von Polynomen”, Compos. Math., 7 (1939), 89–95 | MR | Zbl
[4] M. A. Malik, “On the derivative of a polynomial”, J. Lond. Math. Soc., s2:2 (1969), 57–60 | DOI | MR | Zbl
[5] S. R. Garcia, J. Mashreghi and W. T. Ross, Finite Blaschke products and their connections, Springer, Switzerland, 2018 | MR | Zbl
[6] Q.I.Rahman and G.Schmeisser, Analytic Theory of Polynomials, Oxford Scientific Publ., Oxford, USA, 2002 | MR | Zbl
[7] G.V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in polynomials, extremal problems, inequalities, zeros, World Sci. Publ. Co., Singapore, 1994 | MR | Zbl
[8] A. Aziz, “Inequalities for the polar derivative of a polynomial”, J. Approx. Theory, 55:2 (1988), 183–193 | DOI | MR | Zbl
[9] W.M. Shah, “A generalization of a theorem of Paul Turán”, J. Ramanujan Math. Soc., 11:1 (1996), 67–72 | MR | Zbl
[10] A. Aziz and W. M. Shah, “Inequalities for the polar derivative of a polynomial”, Indian J. Pure Appl. Math., 29:1 (1998), 163–173 | MR | Zbl
[11] B. Chanam, “Bernstein type inequalities for polar derivative of polynomial”, Eur. J. Molec. Clinic. Medic, 8:2 (2021), 1650–1655 | MR
[12] X. Li, R. N. Mohapatra and R. S. Rodriguez, “Bernstein-type inequalities for rational functions with prescribed poles”, J. Lond. Math. Soc., 51:3 (1995), 523–531 | DOI | MR | Zbl
[13] X. Li., “A comparison inequality for rational functions”, Proc. Amer. Math. Soc., 139:5 (2011), 1659–1665 | DOI | MR | Zbl
[14] A. Mir, “Comparison inequality between rational functions with prescribed poles”, Revista de la Real Academia de Ciencias Exactas, F{\i}sicas y Naturales. Ser. A. Matemáticas, 115 (2021), 83 | DOI | MR | Zbl
[15] K. K. Dewan and S. Hans, “Generalization of certain well known polynomial inequalities”, J. Math. Anal. Appl., 363:1 (2010), 38–41 | DOI | MR | Zbl
[16] S. Hans, D. Tripathi, A. A. Mogbademu and B. Tyagi, “Inequalities for rational functions with prescribed poles”, J. Int. Math., 21:1 (2018), 157–169
[17] A. Aziz and Q. M. Dawood, “Inequalities for a polynomial and its derivative”, J. Approx. Theory, 54:3 (1988), 306–313 | DOI | MR | Zbl
[18] A. Aziz and W. M. Shah, “Some properties of rational functions with prescribed poles and restricted zeros”, Math. Balkanica, 18:1-2 (2004), 33–40 | MR | Zbl
[19] A. Aziz and W. M. Shah, “Some refinements of Bernstein type inequalities for rational functions”, Glas. Math. III Ser., 52:1 (1997), 29–37 | MR
[20] M. A. Malik and M. C. Vong, “Inequalities concerning the derivative of polynomials”, Rendiconts Del Circolo Matematico Di Palermo Serie II, 34:2 (1985), 422–426 | DOI | MR | Zbl
[21] M. Y. Mir, S. L. Wali and W. M. Shah, “Inequalities for meromorphic functions not vanishing outside the disk”, J. Math. Sci., 266:4 (2022), 526–533 | DOI | MR | Zbl