Inverse problem for subdiffusion equation with fractional Caputo derivative
Ufa mathematical journal, Tome 16 (2024) no. 1, pp. 112-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an inverse problem on determining the right-hand side of the subdiffusion equation with the fractional Caputo derivative. The right-hand side of the equation has the form $f(x)g(t)$ and the unknown is the function $f(x)$. The condition $ u (x,t_0)= \psi (x) $ is taken as the over-determination condition, where $t_0$ is some interior point of the considered domain and $\psi (x) $ is a given function. By the Fourier method we show that under certain conditions on the functions $g(t)$ and $\psi (x) $ the solution of the inverse problem exists and is unique. We provide an example showing the violation of the uniqueness of the solution of the inverse problem for some sign-changing functions $g(t)$. For such functions $g(t)$ we find necessary and sufficient conditions on the initial function and on the function from the over-determination condition, which ensure the existence of a solution to the inverse problem.
Keywords: forward and inverse problems, the Caputo derivatives, Fourier method.
Mots-clés : subdiffusion equation
@article{UFA_2024_16_1_a7,
     author = {R. R. Ashurov and M. D. Shakarova},
     title = {Inverse problem for subdiffusion equation with fractional {Caputo} derivative},
     journal = {Ufa mathematical journal},
     pages = {112--126},
     year = {2024},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a7/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - M. D. Shakarova
TI  - Inverse problem for subdiffusion equation with fractional Caputo derivative
JO  - Ufa mathematical journal
PY  - 2024
SP  - 112
EP  - 126
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a7/
LA  - en
ID  - UFA_2024_16_1_a7
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A M. D. Shakarova
%T Inverse problem for subdiffusion equation with fractional Caputo derivative
%J Ufa mathematical journal
%D 2024
%P 112-126
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a7/
%G en
%F UFA_2024_16_1_a7
R. R. Ashurov; M. D. Shakarova. Inverse problem for subdiffusion equation with fractional Caputo derivative. Ufa mathematical journal, Tome 16 (2024) no. 1, pp. 112-126. http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a7/

[1] A.V Pskhu, Fractional Differential Equations, Nauka, M., 2005 (in Russian) | Zbl

[2] A.I. Prilepko, A.B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation”, Russ. Acad. Sci. Sb. Math., 75:2 (1993), 473–490 | MR | Zbl

[3] K.B. Sabitov, A.R. Zaynullov, “On the theory of the known inverse problems for the heat transfer equation”, Uchenye Zapiski Kazanskogo Univ. Ser. Fiz.-Matem. Nauki, 161, no. 2, 2019, 274–291 (in Russian) | DOI | MR

[4] K.B. Sabitov, A.R. Zaynullov, “Inverse problems for a two-dimensional heat equation with unknown right-hand side”, Russian Math., 65:3 (2021), 75–88 | DOI | MR | Zbl

[5] D.G. Orlovskii, “Determination of a parameter of an evolution equation”, Diff. Equat., 26:9 (1990), 1201–1207 | MR | Zbl

[6] I.V. Tikhonov, Yu.S. Éidel'man, “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term”, Math. Notes, 77:2 (2005), 246–262 | DOI | DOI | MR | Zbl

[7] M. Slodichka, “Uniqueness for an inverse source problem of determining a space-dependent source in a non-autonomous time-fractional diffusion equation”, Frac. Calc. Appl. Anal., 23:6 (2020), 1703–1711 | MR

[8] M. Slodichka, K. Sishskova, V. Bockstal, “Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation”, Appl. Math. Lett., 91 (2019), 15–21 | DOI | MR

[9] O.A. Ladyzhenskaya, Mixed problem for a hyperbolic equation, Gostexizdat, M., 1953 (in Russian) | MR

[10] Y. Liu, Z. Li, M. Yamamoto, “Inverse problems of determining sources of the fractional partial differential equations”, Fractional Differential Equations, v. 2, eds. A. Kochubei, Yu. Luchko, De Gruyter, 2019, 411–430 | DOI

[11] R. Ashurov, M. Shakarova, “Time-dependent source identification problem for fractional Schrödinger type equations”, Lobachevskii J. Math., 42:3 (2022), 517–525 | DOI | MR

[12] R. Ashurov, M. Shakarova, “Time-dependent source identification problem for a fractional Schrödinger equation with the Riemann-Liouville derivative”, Ukrainian Math. J., 75 (2023), 997–1015 | DOI | MR | Zbl

[13] K. Sakamoto, M. Yamamoto, “Initial value boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382:1 (2011), 426–447 | DOI | MR | Zbl

[14] K. Furati, O. Iyiola, M. Kirane, “An inverse problem for a generalized fractional diffusion”, Appl. Math. Comp., 249 (2014), 24–31 | DOI | MR | Zbl

[15] M. Kirane, A. Malik, “Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time”, Appl. Math. Comp., 218 (2011), 163–170 | DOI | MR | Zbl

[16] M. Kirane, B. Samet, B. Torebek, “Determination of an unknown source term and the temperature distribution for the subdiffusion equation at the initial and final data”, Electr. J. Diff. Equat., 217 (2017), 1–13 | MR

[17] Z. Li, Y. Liu, M. Yamamoto, “Initial-boundary value problem for multi-term time-fractional diffusion equation with positive constant coefficients”, Appl. Math. Comp., 257 (2015), 381–397 | DOI | MR | Zbl

[18] S. Malik, S. Aziz, “An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions”, Comp. Math. Appl., 73:12 (2017), 2548–2560 | DOI | MR | Zbl

[19] M. Ruzhansky, N. Tokmagambetov, B.T. Torebek, “Inverse source problems for positive operators I: Hypoelliptic diffusion and subdiffusion equations”, J. Inverse Ill-Possed Probl., 27:6 (2019), 891–911 | DOI | MR | Zbl

[20] R.R. Ashurov, A.T. Mukhiddinova, “Inverse problem of determining the heat source density for the subdiffusion equation”, Diff. Equat., 56:12 (2020), 1550–1563 | DOI | MR | Zbl

[21] R.R. Ashurov, Yu.E. Fayziev, “Determination of fractional order and source term in a fractional subdiffusion equation”, Eurasian Math. J., 13:1 (2022), 19–31 | DOI | MR | Zbl

[22] K.B. Sabitov, Direct and inverse problems for of mixed type parabolic-hyperbolic equations, Nauka, M., 2016 (in Russian)

[23] S.I. Kabanikhin, Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, Berlin, 2011 | MR

[24] V.E. Fedorov, A.V. Nagumanova, “Inverse problem for evolutionary equation with the Gerasimov-Caputo fractional derivative in the sectorial case”, The Bulletin of Irkutsk State University, Series Mathematics, 28 (2019), 123–137 (in Russian) | DOI | MR | Zbl

[25] S. Liu, F. Sun, L. Feng, “Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative”, Comp. Appl. Math., 40 (2021), 112 | DOI | MR | Zbl

[26] P. Niu, T. Helin, Z. Zhang, “An inverse random source problem in a stochastic fractional diffusion equation”, Inver. Probl., 36:4 (2020), 045002 | DOI | MR | Zbl

[27] R. Ashurov, A. Mukhiddinova, “Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator”, Lobachevskii J. Math., 42:3 (2021), 517–525 | DOI | MR | Zbl

[28] M.A. Krasnoselskii, P.P Zabreyko, E.I. Pustilnik, P.E. Sobolevski, Integral operators in the spaces of integrable functions, Nauka, M., 1966 (in Russian) | MR

[29] V.A. Il'in, “On the solvability of mixed problems for hyperbolic and parabolic equations”, Russ. Math. Surv., 15:2 (1960), 97–154 | MR | Zbl

[30] M.M. Dzherbashian, Integral Transforms and Representation of Functions in the Complex Domain, Nauka, M., 1966 (in Russian) | MR

[31] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogozin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014 | MR | Zbl

[32] R. Ashurov, R. Zunnunov, “Intial-boundary value and inverse problems for subdiffusion equations in $\mathbb{R}^N$”, Fract. Diff. Calc., 10:2 (2020), 291–306 | MR | Zbl

[33] R. Ashurov, A. Cabada, B. Turmetov, “Operator method for construction of solutions of linear fractional differential equations with constant coefficients”, Fract. Calc. Appl. Anal., 1 (2016), 229–252 | DOI | MR | Zbl

[34] S. Kaczmarz, H. Steinhaus, “Theorie der Orthogonalreihen”, Seminarium Matematyczne Uniwersytetu Warszawskiego (Warszawa, 1935)

[35] A.F. Leont'ev, Exponential series, Nauka, M., 1976 (in Russian) | MR | Zbl

[36] Sh.A. Alimov, V.A. Il'in, E.M. Nikishin, “Convergence problems of multiple trigonometrical series and spectral decompositions. I”, Russ. Math. Surv., 31:6 (1976), 28–83 | MR | Zbl