Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid
Ufa mathematical journal, Tome 16 (2024) no. 1, pp. 100-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an initial-boundary problem describing the motion of a two-phase medium with a periodic structure. The first phase of the medium is an isotropic elastic material and the second phase is an incompressible viscoelastic Kelvin-Voigt fluid. This problem consists of second and fourth order partial differential equations, conditions of continuity of displacements and stresses at the phase boundaries, and homogeneous initial and boundary conditions. Using the Laplace transform method, we derive a homogenized problem, which is an initial boundary value problem for the system of fourth order partial integro-differential equations with constant coefficients. The coefficients and convolution kernels of the homogenized equations are found by using solutions of auxiliary periodic problems on the unit cube. In the case of a layered medium, the solutions of the periodic problems are written explicitly, and this allows us to find analytic expressions for the homogenized coefficients and convolution kernels. In particular, we establish that the type and properties of the homogenized convolution kernels depend on the volume fraction of the fluid layers inside the periodicity cell.
Keywords: homogenization, two-phase medium, elastic material, Kelvin-Voigt fluid.
Mots-clés : equations of motion
@article{UFA_2024_16_1_a6,
     author = {A. S. Shamaev and V. V. Shumilova},
     title = {Homogenization of motion equations for medium consisting of elastic material and incompessible {Kelvin-Voigt} fluid},
     journal = {Ufa mathematical journal},
     pages = {100--111},
     year = {2024},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a6/}
}
TY  - JOUR
AU  - A. S. Shamaev
AU  - V. V. Shumilova
TI  - Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid
JO  - Ufa mathematical journal
PY  - 2024
SP  - 100
EP  - 111
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a6/
LA  - en
ID  - UFA_2024_16_1_a6
ER  - 
%0 Journal Article
%A A. S. Shamaev
%A V. V. Shumilova
%T Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid
%J Ufa mathematical journal
%D 2024
%P 100-111
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a6/
%G en
%F UFA_2024_16_1_a6
A. S. Shamaev; V. V. Shumilova. Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid. Ufa mathematical journal, Tome 16 (2024) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a6/

[1] J. Sanchez-Hubert, “Asymptotic study of the macroscopic behavior of a solid-fluid mixture”, Math. Methods Appl. Sci., 2:1 (1980), 1–18 | DOI | MR

[2] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Springer-Verlag, Berlin, 1980 | MR | MR | Zbl

[3] R.P. Gilbert, A. Mikelić., “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Analysis, 40:1 (2000), 185–212 | DOI | MR | Zbl

[4] Th. Clopeau, J.L. Ferrin , R.P. Gilbert, A. Mikelić., “Homogenizing the acoustic properties of the seabed, Part II”, Math. and Comput. Modelling, 33:8-9 (2003), 821–841 | DOI | MR

[5] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[6] V.V. Shumilova, “Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a fluid”, J. Math. Sci., 190:1 (2013), 194–208 | DOI | MR | Zbl

[7] A.S. Shamaev, V.V. Shumilova, “Averaging the acoustics equations for a viscoelastic material with channels filled with a viscous compressible fluid”, Fluid Dyn., 46:2 (2011), 250–261 | DOI | MR | Zbl

[8] A.S. Shamaev, V.V. Shumilova, “Homogenization of the acoustic equations for a porous long-memory viscoelastic material filled with a viscous fluid”, Differ. Equ., 48:8 (2012), 1161–1173 | DOI | MR | MR | Zbl

[9] S.A. Sazhenkov, E.V. Sazhenkova, A.V. Zubkova, “Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior”, Sib. Èlektron. Mat. Izv., 11 (2014), 26–51 | MR | Zbl

[10] A.P. Oskolkov, “Initial-boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids”, Proc. Steklov Inst. Math., 179 (1989), 137–182 | MR | Zbl

[11] V.G. Zvyagin, M.V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids”, J. Math. Sci., 168:2 (2010), 157–308 | DOI | MR | Zbl

[12] J.-L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, v. I, Springer-Verlag, Berlin, 1972 | MR

[13] G.A. Chechkin, A.L. Piatnitski, A.S. Shamaev, Homogenization. Methods and applications, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[14] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology, v. 5, Evolution Problems I, Springer, Berlin–Heidelberg–New York, 2000, 739 pp. | MR

[15] V.V. Shumilova, “Homogenization of the system of acoustic equations for layered viscoelastic media”, J. Math. Sci., 261:3 (2022), 488–501 | DOI | MR | Zbl

[16] V.V. Shumilova, “Effective tensor of the relaxation kernels of a layered medium consisting of a viscoelastic material and a viscous incompressible fluid”, Fluid Dyn., 58:2 (2023), 189–197 | DOI | MR | Zbl

[17] A.S. Shamaev, V.V. Shumilova, “Spectrum of one-dimensional oscillations in the combined stratified medium consisting of a viscoelasticmaterial and a viscous compressible fluid”, Fluid Dyn., 48:1 (2013), 14–22 | DOI | MR | Zbl

[18] A.S. Shamaev, V.V. Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin-Voigt viscoelastic materials”, Proc. Steklov Inst. Math., 295 (2016), 202–212 | DOI | DOI | MR | Zbl

[19] V.V. Shumilova, “Spectrum of natural vibrations of a layered medium consisting of a Kelvin-Voigt material and a viscous incompressible fluid”, Sib. Èlektron. Mat. Izv., 17 (2020), 21–31 | MR | Zbl