@article{UFA_2024_16_1_a5,
author = {S. N. Timergaliev},
title = {Solvability of nonlinear boundary value problems for non-sloping {Timoshenko-type} isotropic shells of zero principal curvature},
journal = {Ufa mathematical journal},
pages = {80--99},
year = {2024},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a5/}
}
TY - JOUR AU - S. N. Timergaliev TI - Solvability of nonlinear boundary value problems for non-sloping Timoshenko-type isotropic shells of zero principal curvature JO - Ufa mathematical journal PY - 2024 SP - 80 EP - 99 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a5/ LA - en ID - UFA_2024_16_1_a5 ER -
%0 Journal Article %A S. N. Timergaliev %T Solvability of nonlinear boundary value problems for non-sloping Timoshenko-type isotropic shells of zero principal curvature %J Ufa mathematical journal %D 2024 %P 80-99 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a5/ %G en %F UFA_2024_16_1_a5
S. N. Timergaliev. Solvability of nonlinear boundary value problems for non-sloping Timoshenko-type isotropic shells of zero principal curvature. Ufa mathematical journal, Tome 16 (2024) no. 1, pp. 80-99. http://geodesic.mathdoc.fr/item/UFA_2024_16_1_a5/
[1] I.I. Vorovich, Nonlinear theory of shallow shells, Springer, New York, 1999 | MR | MR | Zbl
[2] N.F. Morozov, Selected two-dimensional problems of elasticity theory, Leningrad State Univ. Publ., L., 1978 (in Russian)
[3] M.M. Karchevsky, “Investigation of solvability of the nonlinear equilibrium problem of a shallow unfixed shell”, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki, 155, no. 3, 2013, 105–110 (in Russian) | MR
[4] R.A. Kayumov, “Postbuckling behavior of compressed bars with nonlinearly elastic supports”, PNRPU Mechanics Bulletin, 3 (2022), 23–31 | DOI
[5] S.N. Timergaliev, Existence theorems in nonlinear theory of thin elastic shells, Kazan State Univ. Publ., Kazan, 2011 (in Russian)
[6] S.N. Timergaliev, “On the existence of solutions of a nonlinear boundary value problem for the system of partial differential equations of the theory of Timoshenko type shallow shells with free edges”, Differ. Equ., 51:3 (2015), 376–390 | DOI | DOI | MR | Zbl
[7] S.N. Timergaliev, L.S. Kharasova,., “Study of the solvability of a boundary value problem for the system of nonlinear differential equations of the theory of shallow shells of the Timoshenko type”, Differ. Equ., 52:5 (2016), 630–643 | DOI | DOI | MR | Zbl
[8] S.N. Timergaliev, “A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges”, Russian Math. (Iz. VUZ), 61:4 (2017), 49–64 | DOI | MR | Zbl
[9] S.N. Timergaliev, “On solvability of nonlinear equilibrium problems for sloping shells of Timoshenko type”, Prikl. Mat. Mekh., 82:1 (2018), 98–113 (in Russian)
[10] S.N. Timergaliev, “Method of integral equations for studying the solvability of boundary value problems for the system of nonlinear differential equations of the theory of Timoshenko type shallow inhomogeneous shells”, Differ. Uravn., 55:2 (2019), 238–254 | DOI | MR | Zbl
[11] S.N. Timergaliev, “On the problem of solvability of nonlinear boundary value problems for arbitrary isotropic shallow shells of the Timoshenko type with free edges”, Russ. Math., 65:4 (2021), 81–97 | DOI | MR | Zbl
[12] S.N. Timergaliev, “On the solvability of nonlinear boundary value problems for the system of differential equations of equilibrium of shallow anisotropic Timoshenko-type shells with free edges”, Differ. Equ., 57:4 (2021), 488–506 | DOI | DOI | MR | MR | Zbl
[13] K.Z. Galimov, Foundations of nonlinear theory of thin shells, Kazan State Univ. Publ., Kazan, 1975 (in Russian)
[14] I.N. Vekua, Generalized analytic functions, Pergamon Press, Oxford, 1962 | MR | Zbl
[15] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1967 | MR | Zbl
[16] S. Prößdorf, Some classes of singular equations, North-Holland Publishing Company, Amsterdam, 1978 | MR | Zbl
[17] F.D. Gakhov, Boundary value problems, Pergamon Press, Oxford, 1966 | MR | Zbl
[18] A.D. Polyanin, V.F. Zaitsev, Handbook of first order partial differential equations, London, 2002 | MR | Zbl
[19] M.A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | MR | MR | Zbl