On linear-autonomous symmetries of Gu\'eant--Pu fractional model
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 112-125

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the group properties of the Guéant-Pu model with a fractional order in time, which describes the dynamics of option pricing. We find the groups of linear-autonomous equivalence transformations of the corresponding equation. With their help, we obtain a group classification of the fractional Guéant-Pu model with a nonlinear free element. In the case of a non-zero risk-free interest rate $r$, the underlying Lie algebra of such a model is one-dimensional. For zero $r$, the main Lie algebra is three-dimensional in the case of a special right-hand side and it is two-dimensional otherwise.
Keywords: Riemann-Liouville fractional derivative, fractional Guéant-Pu model, symmetry analysis, linear-autonomous transformation
Mots-clés : group of equivalence transformations, group classification.
@article{UFA_2023_15_4_a7,
     author = {Kh. V. Yadrikhinskiy and V. E. Fedorov},
     title = {On linear-autonomous symmetries of {Gu\'eant--Pu} fractional model},
     journal = {Ufa mathematical journal},
     pages = {112--125},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/}
}
TY  - JOUR
AU  - Kh. V. Yadrikhinskiy
AU  - V. E. Fedorov
TI  - On linear-autonomous symmetries of Gu\'eant--Pu fractional model
JO  - Ufa mathematical journal
PY  - 2023
SP  - 112
EP  - 125
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/
LA  - en
ID  - UFA_2023_15_4_a7
ER  - 
%0 Journal Article
%A Kh. V. Yadrikhinskiy
%A V. E. Fedorov
%T On linear-autonomous symmetries of Gu\'eant--Pu fractional model
%J Ufa mathematical journal
%D 2023
%P 112-125
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/
%G en
%F UFA_2023_15_4_a7
Kh. V. Yadrikhinskiy; V. E. Fedorov. On linear-autonomous symmetries of Gu\'eant--Pu fractional model. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 112-125. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/