On linear-autonomous symmetries of Gu\'eant--Pu fractional model
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 112-125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the group properties of the Guéant-Pu model with a fractional order in time, which describes the dynamics of option pricing. We find the groups of linear-autonomous equivalence transformations of the corresponding equation. With their help, we obtain a group classification of the fractional Guéant-Pu model with a nonlinear free element. In the case of a non-zero risk-free interest rate $r$, the underlying Lie algebra of such a model is one-dimensional. For zero $r$, the main Lie algebra is three-dimensional in the case of a special right-hand side and it is two-dimensional otherwise.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Riemann-Liouville fractional derivative, fractional Guéant-Pu model, symmetry analysis, linear-autonomous transformation
Mots-clés : group of equivalence transformations, group classification.
                    
                  
                
                
                Mots-clés : group of equivalence transformations, group classification.
@article{UFA_2023_15_4_a7,
     author = {Kh. V. Yadrikhinskiy and V. E. Fedorov},
     title = {On linear-autonomous symmetries of {Gu\'eant--Pu} fractional model},
     journal = {Ufa mathematical journal},
     pages = {112--125},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/}
}
                      
                      
                    TY - JOUR AU - Kh. V. Yadrikhinskiy AU - V. E. Fedorov TI - On linear-autonomous symmetries of Gu\'eant--Pu fractional model JO - Ufa mathematical journal PY - 2023 SP - 112 EP - 125 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/ LA - en ID - UFA_2023_15_4_a7 ER -
Kh. V. Yadrikhinskiy; V. E. Fedorov. On linear-autonomous symmetries of Gu\'eant--Pu fractional model. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 112-125. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/
