On linear-autonomous symmetries of Guéant–Pu fractional model
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 112-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the group properties of the Guéant-Pu model with a fractional order in time, which describes the dynamics of option pricing. We find the groups of linear-autonomous equivalence transformations of the corresponding equation. With their help, we obtain a group classification of the fractional Guéant-Pu model with a nonlinear free element. In the case of a non-zero risk-free interest rate $r$, the underlying Lie algebra of such a model is one-dimensional. For zero $r$, the main Lie algebra is three-dimensional in the case of a special right-hand side and it is two-dimensional otherwise.
Keywords: Riemann-Liouville fractional derivative, symmetry analysis, linear-autonomous transformation
Mots-clés : fractional Guéant-Pu model, group of equivalence transformations, group classification.
@article{UFA_2023_15_4_a7,
     author = {Kh. V. Yadrikhinskiy and V. E. Fedorov},
     title = {On linear-autonomous symmetries of {Gu\'eant{\textendash}Pu} fractional model},
     journal = {Ufa mathematical journal},
     pages = {112--125},
     year = {2023},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/}
}
TY  - JOUR
AU  - Kh. V. Yadrikhinskiy
AU  - V. E. Fedorov
TI  - On linear-autonomous symmetries of Guéant–Pu fractional model
JO  - Ufa mathematical journal
PY  - 2023
SP  - 112
EP  - 125
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/
LA  - en
ID  - UFA_2023_15_4_a7
ER  - 
%0 Journal Article
%A Kh. V. Yadrikhinskiy
%A V. E. Fedorov
%T On linear-autonomous symmetries of Guéant–Pu fractional model
%J Ufa mathematical journal
%D 2023
%P 112-125
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/
%G en
%F UFA_2023_15_4_a7
Kh. V. Yadrikhinskiy; V. E. Fedorov. On linear-autonomous symmetries of Guéant–Pu fractional model. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 112-125. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a7/

[1] F. Black, “The pricing of Commodity Contracts”, J. Financ. Econ., 3:1-2 (1976), 167–179 | DOI

[2] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, J. Political Econ., 81:3 (1973), 637–659 | DOI | MR

[3] P. Bank, D. Baum, “Hedging and portfolio optimization in financial markets with a large trader”, Math. Finance, 14:1 (2004), 1–18 | DOI | MR | Zbl

[4] G. Barles, H.M. Soner, “Option pricing with transaction costs and a nonlinear Black–Scholes equation”, Financ. Stochastics, 2:4 (1998), 369–397 | DOI | MR | Zbl

[5] J. Cvitanić, I. Karatzas, “Hedging and portfolio optimization under transaction costs: A martingale approach”, Math. Finance, 6:2 (1996), 133–165 | DOI | MR | Zbl

[6] A.S. Kyle, “Continuous auctions and insider trading”, Econometrica, 53:6 (1985), 1315–1335 | DOI | Zbl

[7] H.E. Leland, “Option pricing and replication with transactions costs”, J. Finance, 40:5 (1985), 1283–1301 | DOI

[8] M.J.P. Magill, G.M. Constantinides, “Portfolio selection with transactions costs”, J. Econ. Theory, 13:2 (1976), 245–263 | DOI | MR | Zbl

[9] E. Platen, M. Schweizer, “On feedback effects from hedging derivatives”, Math. Finance, 8:1 (1998), 67–84 | DOI | MR | Zbl

[10] L.C. Rogers, L.S. Singh, “The cost of illiquidity and its effects on hedging”, Math. Finance, 20:4 (2010), 597–615 | DOI | MR | Zbl

[11] O. Guéant, The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making, CRC Press, Boca Raton-London-New York, 2016 | MR | Zbl

[12] O. Guéant, J. Pu, Option pricing and hedging with execution costs and market impact, 2015, arXiv: ; O. Guéant, J. Pu, “Option pricing and hedging with execution costs and market impact”, Math. Finance, 27:3 (2017), 803–831 1311.4342 | MR | DOI | Zbl

[13] Kh.V. Yadrikhinskiy, V.E. Fedorov, “Invariant solutions of the Guéant-Pu model of options pricing and hedging”, Chelyabinskiy Fiz.-Matem. Zhurn., 6:1 (2021), 42–51 (in Russian) | DOI | Zbl

[14] S.M. Sitnik, K.V. Yadrikhinskiy, V.E. Fedorov, “Symmetry analysis of a model of option pricing and hedging”, Symmetry, 14 (2022), 1841 | DOI

[15] K.V. Yadrikhinskiy, V.E. Fedorov, “Symmetry analysis of the Guéant–Pu model”, AIP Conf. Proc., 2528 (2022), 020035 | DOI

[16] Kh.V. Yadrikhinskiy, V.E. Fedorov, M.M. Dyshaev, “Group analysis of the Guéant and Pu Model of Option Pricing and Hedging”, Symmetries and Applications of Differential Equations, eds. A.C.J. Luo, R.K. Gazizov, Springer, Singapore, 2021, 173–203 | DOI | MR | Zbl

[17] L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982 | MR | MR | Zbl

[18] P.J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, New York, 1986 | MR | Zbl

[19] A.M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003

[20] St.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993 | MR | Zbl

[21] A.N. Fall, S.N. Ndiaye, N. Sene, “Black–Scholes option pricing equations described by the Caputo generalized fractional derivative”, Chaos, Solitons Fractals, 125 (2019), 108–118 | DOI | MR | Zbl

[22] S. Kumar, A. Yildirin, Y. Khan, H. Jafari, K. Sayevand, L. Wei, “Analytical solution of fractional Black–Scholes European option pricing equations using Laplace transform”, J. Frac. Cal. Appl., 2:8 (2012), 1–9

[23] P. Sawangtong, K. Trachoo, W. Sawangtong, B. Wiwattanapataphee, “The analytical solution for the Black–Scholes equation with two assets in the Liouville–Caputo fractional derivative sense”, Mathematics, 6:8 (2018), 129 | DOI | MR | Zbl

[24] M. Yavuz, N. Özdemir, “European vanilla option pricing model of fractional order without singular kernel”, Fractal Fract, 2:1 (2018), 3 | DOI | MR

[25] R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk, “Group classification and symmetry reduction of three-dimensional nonlinear anomalous diffusion equation”, Ufa Math. J., 11:4 (2019), 13–26 | DOI | MR | Zbl

[26] R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk, “Fractional differential equations: change of variables and nonlocal symmetries”, Ufimksij Matem. Zhurn., 4:4 (2012), 54–68 (in Russian) | MR | Zbl

[27] A.A. Kasatkin, Symmetries and exact solutions with fractional derivatives of Riemann-Liouville type, PhD thesis, Ufa State Aviation Technical Univ., Ufa, 2013 (in Russian)

[28] R. Gazizov, A. Kasatkin, S. Lukashchuk, “Symmetries, conservation laws and group invariant solutions of fractional PDEs”, Fractional Differential Equations, v. 2, eds. A. Kochubei and Y. Luchko, De Gruyter, Berlin-Boston, 2019, 353–382 | DOI | MR

[29] Zhi-Yong Zhang, Jia Zheng, Symmetry structure of multi-dimensional time-fractional partial differential equations, 2021, arXiv: 1912.08602 | MR

[30] P. Schönbucher, P. Wilmott, “The feedback-effect of hedging in illiquid markets”, SIAM J. Appl. Math., 61:1 (2000), 232–272 | DOI | MR | Zbl

[31] R. Sircar, G. Papanicolaou, “Generalized Black–Scholes models accounting for increased market volatility from hedging strategies”, Appl. Math. Financ., 5:1 (1998), 45–82 | DOI | Zbl