Mots-clés : quadrature formulas
@article{UFA_2023_15_4_a6,
author = {E. H. Khalilov},
title = {Quadrature formula for normal derivative of double layer potential},
journal = {Ufa mathematical journal},
pages = {100--111},
year = {2023},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a6/}
}
E. H. Khalilov. Quadrature formula for normal derivative of double layer potential. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 100-111. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a6/
[1] D.L. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley Sons, New York, 1983 | MR | MR | Zbl
[2] E. Jahnke, F. Emde, F. Lösch, Tafeln Höherer Funktionen, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960 | MR | Zbl
[3] N.M. Gunter, Potential theory and its applications to basic problems of mathematical physics, Ungar, New York, 1967 | MR | MR | Zbl
[4] R. Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Math. Comp. Model., 15:3–5 (1991), 229–243 | DOI | MR | Zbl
[5] E.H. Khalilov, “Quadrature formulas for some classes of curvilinear integrals”, Baku Math. Journ., 1:1 (2022), 15–27 | DOI
[6] E.H. Khalilov, “Analysis of approximate solution for a class of systems of integral equations”, Comput. Math. Math. Phys., 62:5 (2022), 811–826 | DOI | MR | Zbl
[7] M.N. Bakhshaliyeva, E. H. Khalilov, “Justification of the collocation method for an integral equation of the exterior Dirichlet problem for the Laplace equation”, Comput. Math. Math. Phys., 61:6 (2021), 923–937 | DOI | DOI | MR | Zbl
[8] E.H. Khalilov, M.N. Bakhshaliyeva, “Study of approximate solution to integral equation associated with mixed boundary value problem for Laplace equation”, Ufa Math. J., 13:1 (2021), 85–97 | DOI | MR | Zbl
[9] E.H. Khalilov, “Justification of the collocation method for a class of surface integral equations”, Math. Notes, 107:4 (2020), 663–678 | DOI | DOI | MR | Zbl
[10] E.H. Khalilov, A.R. Aliev, “Justification of a quadrature method for an integral equation to the external Neumann problem for the Helmholtz equation”, Math. Meth. Appl. Sci., 41:16 (2018), 6921–6933 | DOI | MR | Zbl
[11] I.K. Lifanov, Singular integral equations and discrete vortices, VSP, Utrecht, 1996 | MR | MR | Zbl
[12] E.H. Khalilov, M. N. Bakhshalyeva, “On the derivative of a logarithmic double-layer potential”, Vestn. Tomsk. Gosud. Univ. Matem. Mekh., 62 (2019), 38–54 (in Russian) | Zbl
[13] V.S. Vladimirov, Equations of mathematical physics, Marcel Dekker, New York, 1971 | MR | MR | Zbl
[14] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1967 | MR | Zbl
[15] E.H. Khalilov, M.N. Bakhshaliyeva, “Quadrature formulas for simple and double layer logarithmic potentials”, Proc. Inst. Math. Mech. Imm. Az., 45:1 (2019), 155–162 | MR | Zbl
[16] M.N. Bakhshaliyeva, “A quadrature formula for the derivative of logarithmic potentials”, Vestn. Tomsk. Gosud. Univ. Matem. Mekh., 68 (2020), 5–22 (in Russian) | MR | Zbl