On invertibility of Duhamel operator in spaces of ultradifferentiable functions
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 62-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Delta$ be a non-point segment or an (open) interval on the real line containing the point $0$. In the space of entire functions realized by the Fourier-Laplace transform of the dual space to the space of ultradifferentiable or of all infinitely differentiable functions on $\Delta$, we study the operators from the commutator subgroup of the one-dimensional perturbation of the backward shift operator. We prove a criterion of their invertibility. In this case, the Riesz-Schauder theory is applied, the use of which in such a situation goes back to the works by V.A. Tkachenko. In the topological dual space to the original space, the multiplication $\circledast$ is introduced and we show that its dual space endowed with a strong topology is a topological algebra. Using the mapping associated with Fourier-Laplace transform, the introduced multiplication $\circledast$ is implemented as a generalized Duhamel product in the corresponding space of ultradifferentiable or infinitely differentiable functions on $\Delta$. We prove a criterion for the invertibility of the Duhamel operator in this space. The multiplication $\circledast$ is used to extend the Duhamel's formula to classes of ultradifferentiable functions. It represents the solution of an inhomogeneous differential equation of finite order with constant coefficients, satisfying zero initial conditions at the point $0$, in the form of Duhamel's product of the right-hand side and a solution to this equation with the right-hand side identically equalling to $1$. The obtained results cover both the non-quasianalytic and quasianalytic cases.
Keywords: backward shift operator, entire function, Duhamel product, ultradifferentiable function.
@article{UFA_2023_15_4_a4,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {On invertibility of {Duhamel} operator in spaces of ultradifferentiable functions},
     journal = {Ufa mathematical journal},
     pages = {62--75},
     year = {2023},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a4/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - On invertibility of Duhamel operator in spaces of ultradifferentiable functions
JO  - Ufa mathematical journal
PY  - 2023
SP  - 62
EP  - 75
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a4/
LA  - en
ID  - UFA_2023_15_4_a4
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T On invertibility of Duhamel operator in spaces of ultradifferentiable functions
%J Ufa mathematical journal
%D 2023
%P 62-75
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a4/
%G en
%F UFA_2023_15_4_a4
O. A. Ivanova; S. N. Melikhov. On invertibility of Duhamel operator in spaces of ultradifferentiable functions. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 62-75. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a4/

[1] A.V. Abanin, Ultradifferentiable functions and ultradistributions, Mir, M., 2007 (in Russian)

[2] V.V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet-Schwartz and dual Fréchet-Schwartz spaces”, Russ. Math. Surv., 34:4 (1979), 105–143 | DOI | MR | Zbl | Zbl

[3] O.A. Ivanova, S.N. Melikhov, “On A.F. Leont'ev's interpolating function”, Ufa Math. J., 6:3 (2014), 17–27 | DOI | MR

[4] O.A. Ivanova, S.N. Melikhov, “On operators which commute with the Pommiez type operator in weighted spaces of entire functions”, St. Petersburg Math. J., 28:2 (2017), 209–224 | DOI | MR | Zbl

[5] O.A. Ivanova, S.N. Melikhov, “The commutant of the Pommiez operator in a space of entire functions of exponential type and polynomial growth on the real line”, Vladikavkaz. Matem. Zhurn., 20:3 (2018), 48–56 (in Russian) | MR | Zbl

[6] O.A. Ivanova, S.N. Melikhov, “Algebras of analytic functionals and the generalized Duhamel product”, Vladikavkaz. Matem. Zhurn., 22:3 (2020), 72–84 (in Russian) | MR | Zbl

[7] O.A. Ivanova, S.N. Melikhov, “Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules”, Funct. Anal. Appl., 56:3 (2022), 188–198 | DOI | DOI | MR | Zbl

[8] O.A. Ivanova, S.N. Melikhov, Yu.N. Melikhov, “On commutant of differentiation and translation operators in weighted spaces of entire functions”, Ufa Math. J., 9:3 (2017), 37–47 | DOI | MR | Zbl

[9] M.T. Karaev, “On some applications of the ordinary and extended Duhamel products”, Siberian Math. J., 46:3 (2005), 431–442 | DOI | MR | Zbl

[10] I.L. Kogan, “Method of Duhamel integral for ordinary differential equations with constant coefficients in respect to the theory of distributions”, Vestnik Samar. Gosud. Tekhn. Univ. Ser. Fiz.-Matem. Nauki, 2010, no. 1(20), 37–45 (in Russian) | DOI | Zbl

[11] M.A. Lavrentiev, B.V. Shabat, Methods of theory of functions of complex variable, Nauka, M., 1973 (in Russian) | MR

[12] V.I. Prasolov, Polynomials, MCCME, M., 2003 (in Russian)

[13] A.P. Robertson, W. Robertson, Topological vector spaces, Cambridge University Press, Cambridge, 1964 | MR | MR | Zbl

[14] V.A. Tkachenko, “Invariant subspaces and unicellularity of operators of generalized integration in spaces of analytic functionals”, Math. Notes, 22:2 (1977), 613–618 | DOI | MR | Zbl

[15] V.A. Tkachenko, “Operators that commute with generalized integration in spaces of analytic functionals”, Math. Notes, 25:2 (1979), 141–146 | DOI | MR | Zbl | Zbl

[16] L. Hörmander, The analysis of linear partial differential operators, v. I, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | MR

[17] R.E. Edwards, Functional analysis. Theory and applications, Holt Rinehart and Winston, New York, 1965 | MR | Zbl

[18] Z. Binderman, “Functional shifts induced by right invertible operators”, Math. Nachr., 157:2 (1992), 211–224 | DOI | MR | Zbl

[19] R.W. Braun, R. Meise, B.A. Taylor, “Ultradifferentiable functions and Fourier analysis”, Results in Math., 17:3-4 (1990), 206–237 | DOI | MR | Zbl

[20] R.M. Crownover, R.C. Hansen, “Commutants of generalized integrations on a space of analytic functions”, Ind. Univ. Math. J., 26:2 (1977), 233–245 | DOI | MR | Zbl

[21] O.A. Ivanova, S.N. Melikhov, “On invariant subspaces of the Pommiez operator in the spaces of entire functions of exponential type”, J. Math. Sci., 241:6 (2019), 760–769 | DOI | MR

[22] Yu.S. Linchuk, “Cyclical elements of operators which are left-inverses to multiplication by an independent variable”, MFAT, 12:4 (2006), 384–388 | MR | Zbl

[23] R. Meise, B.A. Taylor, “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26:2 (1988), 265–287 | DOI | MR | Zbl

[24] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford Clarendon, 1997 | MR | Zbl

[25] A. Rainer, G. Schindl, “Composition in ultradifferentiable classes”, Studia Math., 224:2 (2014), 97–131 | DOI | MR | Zbl

[26] R. Tapdigoglu, B.T. Torebek, “Commutant and Uniqueness of Solutions of Duhamel Equations”, Bull. Malays. Math. Sci. Soc., 44:2 (2021), 705–710 | DOI | MR | Zbl

[27] J.H. Williamson, “Compact linear operators in linear topological spaces”, J. London Math . Soc., 29:2 (1954), 149–156 | DOI | MR | Zbl