Mots-clés : convolution.
@article{UFA_2023_15_4_a3,
author = {O. L. Vinogradov},
title = {Direct and inverse theorems of approximation theory in {Lebesgue} spaces with {Muckenhoupt} weights},
journal = {Ufa mathematical journal},
pages = {42--61},
year = {2023},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a3/}
}
O. L. Vinogradov. Direct and inverse theorems of approximation theory in Lebesgue spaces with Muckenhoupt weights. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 42-61. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a3/
[1] A.F. Timan, Theory of approximation of functions of a real variable, The Macmillan Company, New York, 1960 | MR
[2] E.A. Gadzhieva, Study of properties of functions with quasimonotone Fourier coefficients in generalized weighted Nikolskii-Besov spaces, PhD thesis, Baku, 1986 (in Russian)
[3] N.X. Ky, “Moduli of mean smoothness and approximation with $A_p$-weights”, Annales Univ. Sci. Budapest, 40 (1997), 7–48 | MR
[4] R. Akgün, “Sharp Jackson and converse theorems of trigonometric approximation in weighted Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 152 (2010), 1–18 | MR | Zbl
[5] R. Akgün, “Polynomial approximation in weighted Lebesgue spaces”, East J. on Appr., 17:3 (2011), 253–266 | MR | Zbl
[6] R. Akgün, “Realization and characterization of modulus of smoothness in weighted Lebesgue spaces”, St.-Petersburg Math. J., 26:5 (2015), 741–756 | DOI | MR | Zbl
[7] R. Akgün, “Gadjieva's conjecture, $K$-functionals, and some applications in weighted Lebesgue spaces”, Turk. J. Math., 42:3 (2018), 1484–1503 | MR | Zbl
[8] Y.E. Yildirir, D.M. Israfilov, “Approximation theorems in weighted Lorentz spaces”, Carpat. J. Math., 26:1 (2010), 108–119 | MR | Zbl
[9] R. Akgün, “Jackson type inequalities for differentiable functions in weighted Orlicz spaces”, St.-Petersburg Math. J., 34:1 (2023), 1–24 | DOI | MR | MR
[10] M. Rosenblum, “Summability of Fourier series in $L^p(d\mu)$”, Trans. Amer. Math. Soc., 105:1 (1962), 32–42 | MR | Zbl
[11] B. Muckenhoupt, “Two weight function norm inequalities for the Poisson integral”, Trans. Amer. Math. Soc., 210 (1975), 225–231 | DOI | MR | Zbl
[12] A.D. Nakhman, B.P. Osilenker, “Estimates of weighted norms of some operators generated by multiple trigonometric Fourier series”, Soviet Math. (Iz. VUZ), 26:4 (1982), 46–59 | MR | Zbl
[13] A.D. Nakhman, “Theorems of Rosenblum-Muckenhoupt type for multiple Fourier series of vector-valued functions”, Soviet Math. (Iz. VUZ), 28:4 (1984), 31–39 | MR | Zbl
[14] A.D. Nakhman, “Elementary estimates for weighted norms of convolution operators”, Soviet Math. Iz. VUZ, 33:10 (1989), 103–106 | MR | Zbl
[15] A.D. Nakhman, “Weighted norm inequalities for the convolution operators”, Trans. Tambov State Techn. Univ., 15:3 (2009), 653–660 | MR
[16] E.M. Dyn'kin, B.P. Osilenker, “Weighted estimates for singular integrals and their applications”, J. Soviet Math., 30:3 (1985), 2094–2154 | DOI | Zbl
[17] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl
[18] S.M. Buckley, “Estimates for operator norms on weighted spaces and reverse Jensen inequalities”, Trans. Amer. Math. Soc., 340:1 (1993), 253–272 | DOI | MR
[19] G. Wilmes, “On Riesz-type inequalities and $K$-functionals related to Riesz potentials in $\mathbb R^N$”, Numer. Funct. Anal. and Optimiz., 1:1 (1979), 57–77 | DOI | MR | Zbl
[20] R.M. Trigub, E.S. Belinsky, Fourier analysis and approximation of functions, Kluwer Academic Publishers, Boston – Dordrecht – London, 2004 | MR | Zbl
[21] D.S. Lubinsky, “Weighted Markov – Bernstein inequalities for entire functions of exponential type”, Publ. de l'institut Mathématique. Nouvelle série, 96 (110) (2014), 181–192 | MR | Zbl
[22] G.I. Natanson, M.F. Timan, “Geometric means of a sequence of best approximations”, Vestn. Leningr. Univ. Mat. Mekh. Astron., 19 (1979), 50–52 (in Russian) | Zbl
[23] O.L. Vinogradov, “On the constants in abstract inverse theorems of approximation theory”, St.-Petersburg Math. J., 34:4 (2023), 573–589 | DOI | MR
[24] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl
[25] Z. Ditzian, V.H. Hristov, K.G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
1$”, Constr. Approx., 11:1 (1995), 67–83 | DOI | MR | Zbl[26] R. Akgün, “Direct theorems of trigonometric approximation for variable exponent Lebesgue spaces”, Rev. de la Union Mat. Arg., 60:1 (2019), 121–135 | MR | Zbl
[27] R. Akgün, “Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight”, Issues Anal., 12(30):1 (2023), 3–24 | DOI | MR