Perturbation method for strongly elliptic second order systems with constant coefficients
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 21-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a classical Dirichlet problem for a strongly elliptic second order system with constant coefficients in Jordan domains in the plane. We show that the solution of the problem can be represented as a functional series in the powers of the parameter governing the deviation of the operator of the system from the Laplacian. This series converges uniformly in the closure of the domain under the assumption that the boundary of the domain and the given boundary function satisfy sufficient regularity conditions: the composition of the boundary function with the trace of a conformal mapping of the unit circle on the domain belongs to the Hölder class with the exponent exceeding 1/2.
Keywords: strongly elliptic system, Dirichlet problem
Mots-clés : perturbation method.
@article{UFA_2023_15_4_a1,
     author = {A. O. Bagapsh},
     title = {Perturbation method for strongly elliptic second order systems with constant coefficients},
     journal = {Ufa mathematical journal},
     pages = {21--30},
     year = {2023},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a1/}
}
TY  - JOUR
AU  - A. O. Bagapsh
TI  - Perturbation method for strongly elliptic second order systems with constant coefficients
JO  - Ufa mathematical journal
PY  - 2023
SP  - 21
EP  - 30
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a1/
LA  - en
ID  - UFA_2023_15_4_a1
ER  - 
%0 Journal Article
%A A. O. Bagapsh
%T Perturbation method for strongly elliptic second order systems with constant coefficients
%J Ufa mathematical journal
%D 2023
%P 21-30
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a1/
%G en
%F UFA_2023_15_4_a1
A. O. Bagapsh. Perturbation method for strongly elliptic second order systems with constant coefficients. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 21-30. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a1/

[1] I.G. Petrovsky, “On analyticity of solutions to systems of partial differential equations”, Matem. Sborn., 5:1 (1939), 3–70 (in Russian) | MR

[2] Chin. Math., 6 (1966), 553–560 | MR | Zbl

[3] M.I. Vishik, “On strongly elliptic systems of differential equations”, Matem. Sborn., 29:3 (1951), 615–676 (in Russian) | Zbl

[4] L.K. Hua, W. Lin, C.Q. Wu, Second-order systems of partial differential equations in the plane, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1985 | MR | Zbl

[5] A.O. Bagapsh, K.Yu. Fedorovskiy, “$C^1$-approximation of functions by solutions of second-order elliptic systems on compact sets in $\mathbb{R}^2$”, Proc. Steklov Inst. Math., 298 (2017), 35–50 | DOI | DOI | MR | Zbl

[6] A.V. Bitsadze, “On the uniqueness of the solution of the Dirichlet problem for elliptic partial differential equations”, Uspekhi Matem. Nauk, 3:6(28) (1948), 211–212 | MR | Zbl

[7] L.D. Landau, E.M. Lifshitz, Course of theoretical physics, v. 7, Theory of elasticity, Elsevier, Amsterdam, 1987 | MR

[8] A.O. Bagapsh, K. Yu. Fedorovskiy, “On energy functionals for second order elliptic systems with constant coefficients”, Ufa Math. J., 14:4 (2022), 14–25 | DOI | MR

[9] A.O. Bagapsh, “The perturbation method for the skew-symmetric strongly elliptic systems of PDEs”, Complex Variables and Elliptic Equations, 68:1 (2023), 57–66 | DOI | MR | Zbl

[10] H. Lebesgue, “Sur le probleme de Dirichlet”, Rend. circ. mat. Palerm., 24 (1907), 371–402 | DOI

[11] G.C. Verchota, A.L. Vogel, “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[12] I.I. Privalov, “On Cauchy type integrals”, Dokl. Akad. Nauk, 23:9 (1939), 859–862 (in Russian)

[13] P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970 | MR

[14] Ch. Pommerenke, Boundary behavior of conformal maps, Springer–Verlag, Berlin–Heidelberg, 1992 | MR

[15] A. Calderon, A. Zigmund. On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl

[16] L.V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, New Jersey, 1966 | MR | Zbl

[17] M. Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, 77, Amer. Math. Soc., Providence, RI, 1990, 133 pp. | MR | Zbl

[18] S.L. Sobolev, Some applications of functional analysis to mathematical physics, Nauka, M., 1988 (in Russian) | MR