Mots-clés : perturbation method.
@article{UFA_2023_15_4_a1,
author = {A. O. Bagapsh},
title = {Perturbation method for strongly elliptic second order systems with constant coefficients},
journal = {Ufa mathematical journal},
pages = {21--30},
year = {2023},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a1/}
}
A. O. Bagapsh. Perturbation method for strongly elliptic second order systems with constant coefficients. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 21-30. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a1/
[1] I.G. Petrovsky, “On analyticity of solutions to systems of partial differential equations”, Matem. Sborn., 5:1 (1939), 3–70 (in Russian) | MR
[2] Chin. Math., 6 (1966), 553–560 | MR | Zbl
[3] M.I. Vishik, “On strongly elliptic systems of differential equations”, Matem. Sborn., 29:3 (1951), 615–676 (in Russian) | Zbl
[4] L.K. Hua, W. Lin, C.Q. Wu, Second-order systems of partial differential equations in the plane, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1985 | MR | Zbl
[5] A.O. Bagapsh, K.Yu. Fedorovskiy, “$C^1$-approximation of functions by solutions of second-order elliptic systems on compact sets in $\mathbb{R}^2$”, Proc. Steklov Inst. Math., 298 (2017), 35–50 | DOI | DOI | MR | Zbl
[6] A.V. Bitsadze, “On the uniqueness of the solution of the Dirichlet problem for elliptic partial differential equations”, Uspekhi Matem. Nauk, 3:6(28) (1948), 211–212 | MR | Zbl
[7] L.D. Landau, E.M. Lifshitz, Course of theoretical physics, v. 7, Theory of elasticity, Elsevier, Amsterdam, 1987 | MR
[8] A.O. Bagapsh, K. Yu. Fedorovskiy, “On energy functionals for second order elliptic systems with constant coefficients”, Ufa Math. J., 14:4 (2022), 14–25 | DOI | MR
[9] A.O. Bagapsh, “The perturbation method for the skew-symmetric strongly elliptic systems of PDEs”, Complex Variables and Elliptic Equations, 68:1 (2023), 57–66 | DOI | MR | Zbl
[10] H. Lebesgue, “Sur le probleme de Dirichlet”, Rend. circ. mat. Palerm., 24 (1907), 371–402 | DOI
[11] G.C. Verchota, A.L. Vogel, “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl
[12] I.I. Privalov, “On Cauchy type integrals”, Dokl. Akad. Nauk, 23:9 (1939), 859–862 (in Russian)
[13] P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970 | MR
[14] Ch. Pommerenke, Boundary behavior of conformal maps, Springer–Verlag, Berlin–Heidelberg, 1992 | MR
[15] A. Calderon, A. Zigmund. On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl
[16] L.V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, New Jersey, 1966 | MR | Zbl
[17] M. Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, 77, Amer. Math. Soc., Providence, RI, 1990, 133 pp. | MR | Zbl
[18] S.L. Sobolev, Some applications of functional analysis to mathematical physics, Nauka, M., 1988 (in Russian) | MR