Integral Hardy inequalities, their generalizations and related inequalities
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 3-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hardy inequalities have numerous applications in mathematical physics and spectral theory of unbounded operators. In this paper we describe direct generalizations of integral Hardy inequalities, their improvements and analogues. We systemize the relations between various interpretations of these inequalities and describe new one-dimensional integral inequalities. We show that these known and new inequalities are valid also for complex-valued functions. We consider in details integral inequalities of Hardy, Rellich and Birman type for functions defined on bounded intervals. In particular, we provide the proofs for the generalizations and improvements of Birman integral inequalities for higher derivatives. We briefly discuss multidimensional analogues involving integrals of the powers of the modulus of the gradient of a function or of a polyharmonic operator.
Keywords: Hardy inequality, Rellich inequality, Birman inequality, polyharmonic operator.
Mots-clés : Lamb constant
@article{UFA_2023_15_4_a0,
     author = {F. G. Avkhadiev},
     title = {Integral {Hardy} inequalities, their generalizations and related inequalities},
     journal = {Ufa mathematical journal},
     pages = {3--20},
     year = {2023},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Integral Hardy inequalities, their generalizations and related inequalities
JO  - Ufa mathematical journal
PY  - 2023
SP  - 3
EP  - 20
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a0/
LA  - en
ID  - UFA_2023_15_4_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Integral Hardy inequalities, their generalizations and related inequalities
%J Ufa mathematical journal
%D 2023
%P 3-20
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a0/
%G en
%F UFA_2023_15_4_a0
F. G. Avkhadiev. Integral Hardy inequalities, their generalizations and related inequalities. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a0/

[1] S.L. Sobolev, Selected questions of the theory of functional spaces and generalized functions, Nauka, M., 1989 (in Russian)

[2] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934 | MR | Zbl

[3] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York-London-Paris, 1969 | MR | Zbl

[4] M.Sh. Birman, “On the spectrum of singular boundary-value problems”, Matem. Sborn., 55(97):2 (1961), 125–174 | Zbl

[5] I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem; Oldbourne Press, London, 1965 | MR | Zbl

[6] M.P. Owen, “The Hardy-Rellich inequality for polyharmonic operators”, Proc. Royal Soc. Edinburgh Sect. A: Math., 129:4 (1999), 825–839 | DOI | MR | Zbl

[7] F. Gesztesy, L.L. Littlejohn, I. Michael, R. Wellman, “On Birman's sequence of Hardy-Rellich type inequalities”, J. Differ. Equ., 264:4 (2018), 2761–2801 | DOI | MR | Zbl

[8] N.N. Kalitkin, Numerical methods, Nauka, M., 1978 (in Russian)

[9] H. Brezis, M. Marcus, “Hardy's inequalities revisited”, Ann. Scuola Sup. Pisa Cl. Sci. (4), 25:1-2, Dedicated to Ennio De Giorgi (1997), 217–237 | MR | Zbl

[10] F.G. Avkhadiev, K.-J. Wirths, “Unified Poincaréand Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech. (ZAMM), 87:8-9 (2007), 632–642 | DOI | MR | Zbl

[11] F.G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | DOI | MR | Zbl

[12] H. Lamb, “Note on the Induction of Electric Currents in a Cylinder placed under across the lines of Magnetic Force”, Proc. London Math. Soc., 15 (1884), 270–274 | MR

[13] G.N. Watson, Theory of the Bessel functions, Second edition, Cambridge Univ. Press, Cambridge, 1962

[14] A.A. Balinsky, W.D. Evans, R.T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Heidelberg-New York-Dordrecht-London, 2015 | DOI | MR

[15] M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups, Progress in Mathematics, 327, Birkhauser, Cham, 2019 | DOI | MR | Zbl

[16] F.G. Avkhadiev, Conformally invariant inequalities, Kazan Univ. Publ., Kazan, 2020 (in Russian)

[17] J. Leray, “Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique”, J. Math. Pures Appl., 12 (1933), 1–82 | MR | Zbl

[18] F.G. Avkhadiev, I.K. Shafigullin, “Sharp estimates of Hardy constants for domains with special boundary properties”, Russ. Math. (Iz. VUZ), 58:2 (2014), 58–61 | DOI | MR | Zbl

[19] F.G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[20] F.G. Avkhadiev, R.V. Makarov, “Hardy Type Inequalities on Domains with Convex Complement and Uncertainty Principle of Heisenberg”, Lobachevskii J. Math., 40:9 (2019), 1250–1259 | DOI | MR | Zbl

[21] F. Gazzola, H.Ch. Grunau, G. Sweers, Polyharmonic boundary value problems, Lect. Notes Math., 1991, Springer, Berlin-Heidelberg, 2010 | DOI | MR | Zbl

[22] F.G. Avkhadiev, “Hardy-Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442:2 (2016), 469–484 | DOI | MR | Zbl

[23] F.G. Avkhadiev, “The generalized Davies problem for polyharmonic operators”, Siberian Math. J., 58:6 (2017), 932–942 | DOI | MR | Zbl

[24] F.G. Avkhadiev, “Rellich inequalities for polyharmonic operators in plane domains”, Sb. Math., 209:3 (2018), 292–319 | DOI | DOI | MR | Zbl

[25] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985 | MR | Zbl

[26] F. Avkhadiev, “Selected results and open problems on Hardy-Rellich and Poincaré-Friedrichs inequalities”, Anal. Math. Phys., 11 (2021), 134, 1–20 | DOI | MR

[27] F.G. Avkhadiev, I.R. Kayumov, S.R. Nasyrov, “Extremal problems in geometric function theory”, Uspekhi Matem. Nauk, 78:2(470) (2023), 3–70 | DOI | MR