@article{UFA_2023_15_3_a9,
author = {S. A. Budochkina and T. H. Luu and V. A. Shokarev},
title = {On indirect representability of fourth order ordinary differential equation in form of {Hamilton{\textendash}Ostrogradsky} equations},
journal = {Ufa mathematical journal},
pages = {118--128},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a9/}
}
TY - JOUR AU - S. A. Budochkina AU - T. H. Luu AU - V. A. Shokarev TI - On indirect representability of fourth order ordinary differential equation in form of Hamilton–Ostrogradsky equations JO - Ufa mathematical journal PY - 2023 SP - 118 EP - 128 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a9/ LA - en ID - UFA_2023_15_3_a9 ER -
%0 Journal Article %A S. A. Budochkina %A T. H. Luu %A V. A. Shokarev %T On indirect representability of fourth order ordinary differential equation in form of Hamilton–Ostrogradsky equations %J Ufa mathematical journal %D 2023 %P 118-128 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a9/ %G en %F UFA_2023_15_3_a9
S. A. Budochkina; T. H. Luu; V. A. Shokarev. On indirect representability of fourth order ordinary differential equation in form of Hamilton–Ostrogradsky equations. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 118-128. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a9/
[1] O.P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems”, J. Math. Anal. Appl., 272:1 (2002), 368–379 | DOI | MR | Zbl
[2] Diff. Equats., 49:2 (2013), 176–186 | DOI | MR | Zbl
[3] S.A. Budochkina, E.S. Dekhanova, “On the potentiality of a class of operators relative to local bilinear forms”, Ural Math. J., 7:1 (2021), 26–37 | DOI | MR | Zbl
[4] S.A. Budochkina, T.H. Luu, “On connection between variationality of a six-order ordinary differential equation and Hamilton-Ostrogradskii equations”, Lobachevskii J. Math., 42:15 (2021), 3594–3605 | DOI | MR | Zbl
[5] Doklady Math., 84:1 (2011), 525–526 | DOI | MR | Zbl
[6] S.A. Budochkina, V.M. Savchin, “On direct variational formulations for second order evolutionary equations”, Eurasian Math. J., 3:4 (2012), 23–34 | MR | Zbl
[7] Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl
[8] Proc. Steklov Inst. Math., 283 (2013), 20–34 | DOI | MR | Zbl
[9] J. Math. Sci., 68:3 (1994), 275–398 | DOI | MR
[10] L. He, H. Wu, F. Mei, “Variational integrators for fractional Birkhoffian systems”, Nonl. Dynam., 87 (2017), 2325–2334 | DOI | Zbl
[11] A.S. Galiullin, Inverse Problems of Dynamics, Nauka, M., 1981 (in Russian) | MR | Zbl
[12] A.S. Galiullin, Analytical Dynamics, RUDN Univ. Publ., M., 1998 (in Russian) | MR
[13] A.S. Galiullin, G.G. Gafarov, R.P. Malayshka, A.M. Khvan, Analytical dynamics of Helmholtz, Birkhoff, Nambu systems, Editorial board of “Uspekhi Fizich. Nauk”, M., 1997 (in Russian)
[14] V.K. Kalpakides, A. Charalambopoulos, “On Hamilton's principle for discrete and continuous systems: a convolved action principle”, Rep. Math. Phys., 87:2 (2021), 225–248 | DOI | MR | Zbl
[15] Russ. Math. Surveys, 38:1 (1983), 1–76 | DOI | MR | Zbl
[16] M.V. Ostrogradsky, Complete Collection of Scientific Works, v. II, AS USSR Publ., Kiev, 1961 (in Russian)
[17] Diff. Equats., 34:3 (1998), 423–426 | MR | Zbl
[18] Math. Notes, 72:5 (2002), 687–691 | DOI | DOI | MR | Zbl
[19] R.M. Santilli, Foundations of Theoretical Mechanics, v. I, The Inverse Problems in Newtonian Mechanics, Springer-Verlag, Berlin–Heidelberg, 1977 | MR
[20] V.M. Savchin, Mathematical Methods of the Mechanics of Infinite-Dimensional Nonpotential Systems, RUDN Univ. Publ., M., 1991 (in Russian) | MR
[21] Diff. Equats., 39:1 (2003), 127–134 | DOI | MR | Zbl
[22] Math. Notes, 80:1 (2006), 83–90 | DOI | DOI | MR | Zbl
[23] M.I. Tleubergenov, D.T. Azhymbaev, “On the solvability of stochastic Helmholtz problem”, J. Math. Sci., 253:2 (2021), 297–305 | DOI | MR | Zbl
[24] M.I. Tleubergenov, G.T. Ibraeva, “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93–102 | DOI | MR | Zbl
[25] M.I. Tleubergenov, G.T. Ibraeva, “On the solvability of the main inverse problem for stochastic differential systems”, Ukrainian Math. J., 71:1 (2019), 157–165 | DOI | MR | Zbl
[26] E. Tonti, “On the variational formulation for linear initial value problems”, Annali di Matematica Pura ed Applicata, 95 (1973), 331–359 | DOI | MR | Zbl
[27] E. Tonti, “Variational formulation for every nonlinear problem”, Int. J. Engin. Sci., 22:11-12 (1984), 1343–1371 | DOI | MR | Zbl
[28] Y. Zhou, Y. Zhang, “Fractional Pfaff-Birkhoff principle and Birkhoff's equations in terms of Riesz fractional derivatives”, Trans. Nanjing Univ. of Aeronautics and Astronautics, 31:1 (2014), 63–69