@article{UFA_2023_15_3_a8,
author = {A. D. Baranov and A. A. Lishanskii},
title = {Point spectrum and hypercyclicity problem for a class of truncated {Toeplitz} operators},
journal = {Ufa mathematical journal},
pages = {106--117},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/}
}
TY - JOUR AU - A. D. Baranov AU - A. A. Lishanskii TI - Point spectrum and hypercyclicity problem for a class of truncated Toeplitz operators JO - Ufa mathematical journal PY - 2023 SP - 106 EP - 117 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/ LA - en ID - UFA_2023_15_3_a8 ER -
A. D. Baranov; A. A. Lishanskii. Point spectrum and hypercyclicity problem for a class of truncated Toeplitz operators. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 106-117. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/
[1] E. Abakumov, A. Baranov, S. Charpentier, A. Lishanskii, “New classes of hypercyclic Toeplitz operators”, Bull. Sci. Math., 168 (2021), 102971 | DOI | MR | Zbl
[2] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi, D. Timotin, “Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators”, J. Funct. Anal., 259:10 (2011), 2673–2701 | DOI | MR
[3] A. Baranov, A. Lishanskii, “Hypercyclic Toeplitz operators”, Results Math., 70:3 (2016), 337–347 | DOI | MR | Zbl
[4] F. Bayart, É. Matheron, Dynamics of linear operators, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[5] C. Bénéteau, M. Fleeman, D. Khavinson, A. Sola, “On the concept of inner function in Hardy and Bergman spaces in multiply connected domains”, Anal. Math. Phys., 9:2 (2019), 839–866 | DOI | MR | Zbl
[6] M.C. Câmara, J.R. Partington, “Spectral properties of truncated Toeplitz operators by equivalence after extension”, J. Math. Anal. Appl., 433:2 (2016), 762–784 | DOI | MR
[7] I. Chalendar, E. Fricain, D. Timotin, “A survey of some recent results on truncated Toeplitz operators”, Recent progress on operator theory and approximation in spaces of analytic functions, Proc. Conference on completeness problems, Carleson measures, and spaces of analytic functions, Amer. Math. Soc., Providence, RI, 2016, 59–77 | DOI | MR | Zbl
[8] P. Duren, Theory of $H^p$-dpaces, Academic Press, New York, 1970 | MR | Zbl
[9] S.R. Garcia, W.T. Ross, “Recent progress on truncated Toeplitz operators”, Blaschke products and their applications, Springer, New York, 2013, 275–319 | DOI | MR | Zbl
[10] G. Godefroy, J.H. Shapiro, “Operators with dense, invariant cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl
[11] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear chaos, Springer, London, 2011 | MR | Zbl
[12] D. Khavinson, “Factorization theorems for different classes of analytic functions in multiply connected domains”, Pacific J. Math., 108:2 (1983), 295–318 | DOI | MR | Zbl
[13] F. León-Saavedra, A. Piqueras-Lerena, “Cyclic properties of Volterra operator”, Pacific J. Math., 211:1 (2003), 157–162 | DOI | MR | Zbl
[14] N.K. Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin, 1986 | MR | Zbl
[15] S. Rolewicz, “On orbits of elements”, Studia Math., 32:1 (1969), 17–22 | DOI | MR | Zbl
[16] D. Sarason, “A remark on the Volterra operator”, J. Math. Anal. Appl., 12:2 (1965), 244–246 | DOI | MR | Zbl
[17] D. Sarason, “Algebraic properties of truncated Toeplitz operators”, Oper. Matrices, 1:4 (2007), 491–526 | DOI | MR | Zbl
[18] S. Shkarin, Orbits of coanalytic Toeplitz operators and weak hypercyclicity, 2012, arXiv: 1210.3191 | MR