Point spectrum and hypercyclicity problem for a class of truncated Toeplitz operators
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 106-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Truncated Toeplitz operators are restrictions of usual Toeplitz operators onto model subspaces $K_\theta =H^2 \ominus \theta H^2$ of the Hardy space $H^2$, where $\theta$ is an inner function. In this note we study the structure of eigenvectors for a class of truncated Toeplitz operators and discuss an open problem whether a truncated Toeplitz operator on a model space can be hypercyclic, that is, whether there exists a vector with a dense orbit. For the classical Toeplitz operators on $H^2$ with antianalytic symbols a hypercyclicity criterion was given by G. Godefroy and J. Shapiro, while for Toeplitz operators with polynomial or rational antianalytic part some partial answers were obtained by the authors jointly with E. Abakumov and S. Charpentier. We find point spectrum and eigenfunctions for a class of truncated Toeplitz operators with polynomial analytic and antianalytic parts. It is shown that the eigenvectors are linear combinations of reproducing kernels at some points such that the values of the inner function $\theta$ at these points have a polynomial dependence. Next we show that, for a class of model spaces, truncated Toeplitz operators with symbols of the form $\Phi(z) =a \bar{z} +b + cz$, where $|a| \ne |c|$, have complete sets of eigenvectors and, in particular, are not hypercyclic. Our main tool here is the factorization of functions in an associated Hardy space in an annulus. We also formulate several open problems.
Keywords: Hypercyclic operator, Toeplitz operator, model space, truncated Toeplitz operator.
@article{UFA_2023_15_3_a8,
     author = {A. D. Baranov and A. A. Lishanskii},
     title = {Point spectrum and hypercyclicity problem for a class of truncated {Toeplitz} operators},
     journal = {Ufa mathematical journal},
     pages = {106--117},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/}
}
TY  - JOUR
AU  - A. D. Baranov
AU  - A. A. Lishanskii
TI  - Point spectrum and hypercyclicity problem for a class of truncated Toeplitz operators
JO  - Ufa mathematical journal
PY  - 2023
SP  - 106
EP  - 117
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/
LA  - en
ID  - UFA_2023_15_3_a8
ER  - 
%0 Journal Article
%A A. D. Baranov
%A A. A. Lishanskii
%T Point spectrum and hypercyclicity problem for a class of truncated Toeplitz operators
%J Ufa mathematical journal
%D 2023
%P 106-117
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/
%G en
%F UFA_2023_15_3_a8
A. D. Baranov; A. A. Lishanskii. Point spectrum and hypercyclicity problem for a class of truncated Toeplitz operators. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 106-117. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a8/

[1] E. Abakumov, A. Baranov, S. Charpentier, A. Lishanskii, “New classes of hypercyclic Toeplitz operators”, Bull. Sci. Math., 168 (2021), 102971 | DOI | MR | Zbl

[2] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi, D. Timotin, “Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators”, J. Funct. Anal., 259:10 (2011), 2673–2701 | DOI | MR

[3] A. Baranov, A. Lishanskii, “Hypercyclic Toeplitz operators”, Results Math., 70:3 (2016), 337–347 | DOI | MR | Zbl

[4] F. Bayart, É. Matheron, Dynamics of linear operators, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[5] C. Bénéteau, M. Fleeman, D. Khavinson, A. Sola, “On the concept of inner function in Hardy and Bergman spaces in multiply connected domains”, Anal. Math. Phys., 9:2 (2019), 839–866 | DOI | MR | Zbl

[6] M.C. Câmara, J.R. Partington, “Spectral properties of truncated Toeplitz operators by equivalence after extension”, J. Math. Anal. Appl., 433:2 (2016), 762–784 | DOI | MR

[7] I. Chalendar, E. Fricain, D. Timotin, “A survey of some recent results on truncated Toeplitz operators”, Recent progress on operator theory and approximation in spaces of analytic functions, Proc. Conference on completeness problems, Carleson measures, and spaces of analytic functions, Amer. Math. Soc., Providence, RI, 2016, 59–77 | DOI | MR | Zbl

[8] P. Duren, Theory of $H^p$-dpaces, Academic Press, New York, 1970 | MR | Zbl

[9] S.R. Garcia, W.T. Ross, “Recent progress on truncated Toeplitz operators”, Blaschke products and their applications, Springer, New York, 2013, 275–319 | DOI | MR | Zbl

[10] G. Godefroy, J.H. Shapiro, “Operators with dense, invariant cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl

[11] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear chaos, Springer, London, 2011 | MR | Zbl

[12] D. Khavinson, “Factorization theorems for different classes of analytic functions in multiply connected domains”, Pacific J. Math., 108:2 (1983), 295–318 | DOI | MR | Zbl

[13] F. León-Saavedra, A. Piqueras-Lerena, “Cyclic properties of Volterra operator”, Pacific J. Math., 211:1 (2003), 157–162 | DOI | MR | Zbl

[14] N.K. Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin, 1986 | MR | Zbl

[15] S. Rolewicz, “On orbits of elements”, Studia Math., 32:1 (1969), 17–22 | DOI | MR | Zbl

[16] D. Sarason, “A remark on the Volterra operator”, J. Math. Anal. Appl., 12:2 (1965), 244–246 | DOI | MR | Zbl

[17] D. Sarason, “Algebraic properties of truncated Toeplitz operators”, Oper. Matrices, 1:4 (2007), 491–526 | DOI | MR | Zbl

[18] S. Shkarin, Orbits of coanalytic Toeplitz operators and weak hypercyclicity, 2012, arXiv: 1210.3191 | MR