On nonlinear hyperbolic systems related by Bäcklund transforms
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 80-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we describe pairs of nonlinear hyperbolic system of equations $u_{xy} = f(u, u_x, u_y)$, where $u^i_{xy} = f^i$, $i = 1,2, \dots n$, the linearizations of which are related by the first order Laplace transform. On the base of this Laplace transform we construct Bäcklund transforms relating the solutions of nonlinear systems. The classical Bäcklund transform is defined for a second-order nonlinear differential equation whose solution is a function of two independent variables. The Bäcklund transform for a pair of nonlinear equations is a system of relations involving functions and their first derivatives and it provides a transform of a solution of one equation into the solution of another and vice versa. The Bäcklund transforms preserve integrability. The Bäcklund problem is to list possible Bäcklund transforms and the equations admitting such transforms. The Laplace cascade integration method is one of the classical methods for integrating linear partial differential equations. The Laplace transform is a special case of the Bäcklund transform for linear equations. The method used in this paper was previously applied to nonlinear hyperbolic equations. In this paper, this method is employed to describe systems associated with Bäcklund transforms.
Keywords: nonlinear hyperbolic system, Bäcklund transform, linearization.
Mots-clés : Laplace transform
@article{UFA_2023_15_3_a5,
     author = {M. N. Kuznetsova},
     title = {On nonlinear hyperbolic systems related by {B\"acklund} transforms},
     journal = {Ufa mathematical journal},
     pages = {80--87},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a5/}
}
TY  - JOUR
AU  - M. N. Kuznetsova
TI  - On nonlinear hyperbolic systems related by Bäcklund transforms
JO  - Ufa mathematical journal
PY  - 2023
SP  - 80
EP  - 87
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a5/
LA  - en
ID  - UFA_2023_15_3_a5
ER  - 
%0 Journal Article
%A M. N. Kuznetsova
%T On nonlinear hyperbolic systems related by Bäcklund transforms
%J Ufa mathematical journal
%D 2023
%P 80-87
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a5/
%G en
%F UFA_2023_15_3_a5
M. N. Kuznetsova. On nonlinear hyperbolic systems related by Bäcklund transforms. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 80-87. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a5/

[1] P.S. Laplace, “Recherches sur le calcul integral aux differences partielles”, Mémoires de l'Académie royale des Sciences de Paris, 1773/77, 341–402; reprinted in: P.S. Laplace's oevres completés, v. IX, Gauthier-Villars, Paris, 1893, 5–68

[2] E. Goursat, Leçon sur l'intégration des équations aux dérivées partielles du second ordre á deux variables indépendantes, v. I, Hermann, Paris, 1896 ; v. II, 1898 | MR

[3] G. Darboux, “Sur les équations aux dérivées partielles du second ordre”, Ann. Sci. Ecole Norm. Sup., 7 (1870), 163–173 | DOI | MR

[4] E. Vessiot, “Sur les équations aux dérivées partielles du second order, $F(x,y,z,p,q,r,s,t) = 0$, integrable par la méthode de Darboux”, J. Math. pure appl., 18 (1939), 1–61 | MR | Zbl

[5] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl

[6] O.V. Kaptsov, Methods of integrations of partial differential equations, Fizmatlit, M., 2009 (in Russian)

[7] I.M. Anderson, N. Kamran, The variational bicomplex for second order scalar partial differential equations in the plane, Preprint, Centre de Recherches Mathematiques, Universite de Montreal, Montreal, 1994 | MR

[8] I.M. Anderson, N. Kamran, “The variational bicomplex for hiperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[9] A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev, “Darboux integrable nonlinear hyperbolic equations”, Dokl. Math., 52:1 (1995), 128–130 | MR | Zbl

[10] S.Ya. Startsev, “Laplace invariants of hyperbolic equations linearizable by a differential substitution”, Theor. Math. Phys., 120:2 (1999), 1009–1018 | DOI | DOI | MR | Zbl

[11] S.Ya. Startsev, “Hyperbolic equations admitting differential substitutions”, Theor. Math. Phys., 127:1 (2001), 460–470 | DOI | DOI | MR | Zbl

[12] S.Ya. Startsev, “Cascade method of Laplace integration for linear hyperbolic systems of equations”, Math. Notes, 83:1 (2008), 97–106 | DOI | DOI | MR | MR | Zbl

[13] N.Kh. Ibragimov, Transformation groups applied to mathematical physics, D. Reidel Publ. Co., Dordrecht, 1985 | MR | MR | Zbl

[14] G.L. Lamb, Elements of soliton theory, John Wiley Sons, New York, 1980 | MR | Zbl

[15] S.V. Khabirov, Bäcklund transform of evolution equations, Bashkir Branch of Academy of Sciences of USSR, Ufa, 1984 (in Russian)

[16] S.V. Khabirov, “Infinite-parameter families of solutions of nonlinear differential equations”, Russ. Acad. Sci. Sb. Math., 77:2 (1994), 303–311 | MR | Zbl

[17] A.G. Meshkov, V.V. Sokolov, “Hyperbolic equations with third-order symmetries”, Theor. Math. Phys., 166:1 (2011), 43–57 | DOI | MR | Zbl

[18] M.N. Kuznetsova, A. Pekcan, A.V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form $v = \varphi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp. | MR | Zbl

[19] M.N. Kuznetsova, “Laplace transformation and nonlinear hyperbolic equations”, Ufimskij Matem. Zhurn., 1:3 (2009), 87–96 (in Russian) | MR | Zbl

[20] A.N. Leznov, V.G. Smirnov, A.B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl | Zbl