Mots-clés : Laplace transform
@article{UFA_2023_15_3_a5,
author = {M. N. Kuznetsova},
title = {On nonlinear hyperbolic systems related by {B\"acklund} transforms},
journal = {Ufa mathematical journal},
pages = {80--87},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a5/}
}
M. N. Kuznetsova. On nonlinear hyperbolic systems related by Bäcklund transforms. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 80-87. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a5/
[1] P.S. Laplace, “Recherches sur le calcul integral aux differences partielles”, Mémoires de l'Académie royale des Sciences de Paris, 1773/77, 341–402; reprinted in: P.S. Laplace's oevres completés, v. IX, Gauthier-Villars, Paris, 1893, 5–68
[2] E. Goursat, Leçon sur l'intégration des équations aux dérivées partielles du second ordre á deux variables indépendantes, v. I, Hermann, Paris, 1896 ; v. II, 1898 | MR
[3] G. Darboux, “Sur les équations aux dérivées partielles du second ordre”, Ann. Sci. Ecole Norm. Sup., 7 (1870), 163–173 | DOI | MR
[4] E. Vessiot, “Sur les équations aux dérivées partielles du second order, $F(x,y,z,p,q,r,s,t) = 0$, integrable par la méthode de Darboux”, J. Math. pure appl., 18 (1939), 1–61 | MR | Zbl
[5] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl
[6] O.V. Kaptsov, Methods of integrations of partial differential equations, Fizmatlit, M., 2009 (in Russian)
[7] I.M. Anderson, N. Kamran, The variational bicomplex for second order scalar partial differential equations in the plane, Preprint, Centre de Recherches Mathematiques, Universite de Montreal, Montreal, 1994 | MR
[8] I.M. Anderson, N. Kamran, “The variational bicomplex for hiperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl
[9] A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev, “Darboux integrable nonlinear hyperbolic equations”, Dokl. Math., 52:1 (1995), 128–130 | MR | Zbl
[10] S.Ya. Startsev, “Laplace invariants of hyperbolic equations linearizable by a differential substitution”, Theor. Math. Phys., 120:2 (1999), 1009–1018 | DOI | DOI | MR | Zbl
[11] S.Ya. Startsev, “Hyperbolic equations admitting differential substitutions”, Theor. Math. Phys., 127:1 (2001), 460–470 | DOI | DOI | MR | Zbl
[12] S.Ya. Startsev, “Cascade method of Laplace integration for linear hyperbolic systems of equations”, Math. Notes, 83:1 (2008), 97–106 | DOI | DOI | MR | MR | Zbl
[13] N.Kh. Ibragimov, Transformation groups applied to mathematical physics, D. Reidel Publ. Co., Dordrecht, 1985 | MR | MR | Zbl
[14] G.L. Lamb, Elements of soliton theory, John Wiley Sons, New York, 1980 | MR | Zbl
[15] S.V. Khabirov, Bäcklund transform of evolution equations, Bashkir Branch of Academy of Sciences of USSR, Ufa, 1984 (in Russian)
[16] S.V. Khabirov, “Infinite-parameter families of solutions of nonlinear differential equations”, Russ. Acad. Sci. Sb. Math., 77:2 (1994), 303–311 | MR | Zbl
[17] A.G. Meshkov, V.V. Sokolov, “Hyperbolic equations with third-order symmetries”, Theor. Math. Phys., 166:1 (2011), 43–57 | DOI | MR | Zbl
[18] M.N. Kuznetsova, A. Pekcan, A.V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form $v = \varphi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp. | MR | Zbl
[19] M.N. Kuznetsova, “Laplace transformation and nonlinear hyperbolic equations”, Ufimskij Matem. Zhurn., 1:3 (2009), 87–96 (in Russian) | MR | Zbl
[20] A.N. Leznov, V.G. Smirnov, A.B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | Zbl | Zbl