Necessary condition of fundamental principle for invariant subspaces on unbounded convex domain
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 69-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the spaces $H(D)$ of analytic functions in convex domains of the complex plane as well as subspaces $W(\Lambda,D)$ of such spaces. A subspace $W(\Lambda,D)$ is the closure in the space $H(D)$ of the linear span of the system $\mathcal{E}(\Lambda)=\{z^n \exp(\lambda_k z)\}_{k=1,n=0}^{\infty,n_k-1}$, where $\Lambda$ is the sequence of different complex numbers $\lambda_k$ and their multiplicities $n_k$. This subspace is invariant with respect to the differentiation operator. The main problem in the theory of invariant subspaces is to represent all its functions by using the eigenfunctions and associated functions of the differentiation operator, $z^n e^{\lambda_k z}$. In this paper we study the problem of the fundamental principle for an invariant subspace $W(\Lambda,D)$, that is, the problem of representing all its elements by using a series constructed over the system $\mathcal{E}(\Lambda)$. We obtain simple geometric conditions, which are necessary for the existence of a fundamental principle. These conditions are formulated in terms of the length of the arc of the convex domain and the maximum density of the exponent sequence.
Keywords: exponential monomial, fundamental principle, length of arc.
Mots-clés : convex domain
@article{UFA_2023_15_3_a4,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Necessary condition of fundamental principle for invariant subspaces on unbounded convex domain},
     journal = {Ufa mathematical journal},
     pages = {69--79},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a4/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Necessary condition of fundamental principle for invariant subspaces on unbounded convex domain
JO  - Ufa mathematical journal
PY  - 2023
SP  - 69
EP  - 79
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a4/
LA  - en
ID  - UFA_2023_15_3_a4
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Necessary condition of fundamental principle for invariant subspaces on unbounded convex domain
%J Ufa mathematical journal
%D 2023
%P 69-79
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a4/
%G en
%F UFA_2023_15_3_a4
A. S. Krivosheev; O. A. Krivosheeva. Necessary condition of fundamental principle for invariant subspaces on unbounded convex domain. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 69-79. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a4/

[1] A.F. Leontiev, Entire functions. Exponential series, Nauka, M., 1983 (in Russian) | MR

[2] A.S. Krivosheev, “A fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353 | DOI | DOI | MR | Zbl

[3] O.A. Krivosheeva, A.S. Krivosheev, “A Criterion for the fundamental principle to hold for invariant subspaces on bounded convex domains in the complex plane”, Funct. Anal. Appl., 46:4 (2012), 249–261 | DOI | DOI | MR | Zbl

[4] A.S. Krivosheev, O.A. Krivosheeva, “Fundamental principle and a basis in invariant subspaces”, Math. Notes, 99:5 (2016), 685–696 | DOI | DOI | MR | Zbl

[5] A.S. Krivosheev, O.A. Krivosheeva, “A basis in an invariant subspace of analytic functions”, Sb. Math., 204:12 (2013), 1745–1796 | DOI | DOI | MR | Zbl

[6] A.S. Krivosheev, O.A. Krivosheyeva, “A basis in invariant subspace of entire functions”, St. Petersburg Math. J., 27:2 (2016), 273–316 | DOI | MR | MR | Zbl

[7] O.A. Krivosheyeva, A.S. Krivosheyev, “A representation of functions from an invariant subspace with almost real spectrum”, St. Petersburg Math. J., 29:4 (2018), 603–641 | DOI | MR | Zbl

[8] A.S. Krivosheev, O.A. Krivosheeva, “Invariant subspaces in half-plane”, Ufa Math. J., 12:3 (2020), 30–43 | DOI | MR | Zbl

[9] A.S. Krivosheev, O.A. Krivosheeva, “Invariant subspaces in unbounded domains”, Probl. Anal. Issues Anal., 10 (28):3 (2021), 91–107 | DOI | MR | Zbl

[10] A.I. Abdulnagimov, A.S. Krivosheyev, “Properly distributed subsets in complex plane”, St. Petersburg Math. J., 28:4 (2017), 433–464 | DOI | MR | Zbl

[11] B.Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1980 | MR

[12] O.A. Krivosheeva, A.S. Krivosheev, A.I. Rafikov, “Lower bounds for entire functions”, Ufa Math. J., 11:3 (2019), 44–60 | DOI | MR | Zbl

[13] P. Lelong, L. Gruman, Entire functions of several complex variables, Springer-Verlag, Berlin, 1986 | MR | Zbl

[14] A.S. Krivosheev, “On indicators of entire functions and extension of solutions of a homogeneous convolution equation”, Russ. Acad. Sci. Sb. Math., 79:2 (1994), 401–423 | MR | Zbl

[15] R.S. Yulmukhametov, “Approximation of subharmonic functions”, Anal. Math., 11 (1985), 257–282 | DOI | MR | Zbl

[16] A.S. Krivosheev, V.V. Napalkov, “Complex analysis and convolution operators”, Russ. Math. Surv., 47:6 (1992), 1–56 | DOI | MR | Zbl