Perturbation of a simple wave: from simulation to asymptotics
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 54-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem on perturbation of a simple (travelling) wave at the example of a nonlinear partial differential equation that models domain wall dynamics in the weak ferromagnets. The main attention is focused on the case when, for fixed constants coefficients, there exist many exact solutions in the form of a simple wave. These solutions are determined by an ordinary differential equation with boundary conditions at infinity. The equation depends on the wave velocity as a parameter. Suitable solutions correspond to the phase trajectory connecting the equilibria. The main problem is that the wave velocity is not uniquely determined by the coefficients of the initial equations. For an equation with slowly varying coefficients, the asymptotics of the solution is constructed with respect to a small parameter. In the considered case, the well-known asymptotic construction turns out to be ambiguous due to the uncertainty of the perturbed wave velocity. For unique identification of the velocity, we propose an additional restriction on the structure of the asymptotic solution. This restriction is a stability of the wave front is formulated on the base of numerical simulation of the original equation.
Keywords: simple wave, small parameter, asymptotics.
Mots-clés : perturbation
@article{UFA_2023_15_3_a3,
     author = {L. A. Kalyakin},
     title = {Perturbation of a simple wave: from simulation to asymptotics},
     journal = {Ufa mathematical journal},
     pages = {54--68},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a3/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Perturbation of a simple wave: from simulation to asymptotics
JO  - Ufa mathematical journal
PY  - 2023
SP  - 54
EP  - 68
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a3/
LA  - en
ID  - UFA_2023_15_3_a3
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Perturbation of a simple wave: from simulation to asymptotics
%J Ufa mathematical journal
%D 2023
%P 54-68
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a3/
%G en
%F UFA_2023_15_3_a3
L. A. Kalyakin. Perturbation of a simple wave: from simulation to asymptotics. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 54-68. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a3/

[1] A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, “Study of diffusion equation related with growth of matter and its application to one biological problem”, Bull. MGU. Matem. Mekh., 1:6 (1937), 1–25 (in Russian) | Zbl

[2] J.D. Murray, Lectures on nonlinear-differential-equations models in biology, Clarendon Press, Oxford, 1977

[3] V.G. Danilov, V.P. Maslov, K.A. Volosov, Mathematical modelling of heat and mass transfer processes, Kluwer Academic Publ., Dordrecht, 1995 | MR | Zbl

[4] V.G. Danilov, “Global formulas for solutions of quasilinear parabolic equations with a small parameter and ill-posedness”, Matem. Zamet., 46:1 (1989), 115–117 (in Russian) | MR | Zbl

[5] V.G. Danilov, “Asymptotic solutions of traveling wave type for semilinear parabolic equations with a small parameter”, Matem. Zamet., 48:2 (1990), 148–151 (in Russian) | MR | Zbl

[6] L.A. Kalyakin, “Perturbation of a simple wave in a system with dissipation”, Math. Notes, 112:4 (2022), 549–560 | DOI | DOI | MR | Zbl

[7] A.K. Zvezdin, “Dynamics of domain walls in weak ferromagnets”, JETP Lett., 29:10 (1979), 553–557

[8] Z.V. Gareeva, X.M. Chen, “Ultrafast dynamics of domain walls in antiferromagnets and ferrimagnets with temperatures of compensation of the magnetic moment and angular momentum (brief review)”, J. Exp. Theor. Phys. Lett., 114:4 (2021), 215–226 | DOI | MR

[9] I.Ya. Kanel', “Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory”, Matem. Sborn., 59:101 (1962), 245–288 (in Russian) | Zbl

[10] K. Uchiyama, “The behavior of solutions of some non-linear diffusion equations for large time”, J. Math. Kyoto Univ., 18:3 (1978), 453–508 | MR | Zbl

[11] T.B. Shapaeva, R.R. Murtazin, E.G. Ekomasov, “Dynamics of domain walls under the action of pulse and gradient magnetic fields in rare-earth orthoferrites”, Bull. Russ. Acad. Sci: Phys., 78:2 (2014), 88–91 | DOI | DOI | MR

[12] L.A. Kalyakin, “Phantom asymptotic solutions”, Ufa Math. J., 6:2 (2014), 44–65 | DOI | MR

[13] V.I. Karpman, E.M. Maslov, “Perturbation theory for solitons”, Soviet Physics-JETP, 46:2 (1977), 281–291 | MR

[14] E.M. Maslov, “Perturbation theory for solitons in the second approximation”, Theor. Math. Phys., 42:3 (1980), 237–245 | DOI | MR

[15] A.C. Newell, “The inverse scattering transform”, Solitons, eds. R.K. Bullough, P.J. Caudrey, Springer-Verlag, Berlin, 1980, 177–242 | DOI | MR

[16] V.P. Maslov, G.A. Omel'yanov, “Asymptotic soliton-form solutions of equations with small dispersion”, Russ. Math. Surv., 36:3 (1981), 73–149 | DOI | MR | Zbl | Zbl

[17] L.A. Kalyakin, “Perturbation of the Korteweg-de Vries soliton”, Theor. Math. Phys., 92:1 (1992), 736–747 | DOI | MR | Zbl

[18] L.A. Kalyakin, “On the problem of first correction in soliton perturbation theory”, Sb. Math., 186:7 (1995), 977–1002 | DOI | MR | Zbl

[19] A.H. Nayfeh, Perturbation methods, A Wiley-Interscience Publ., New York, 1973 | MR | Zbl

[20] N.N. Bogolyubov, Yu.A. Mitropol'skij, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publ., New York, 1961 | MR | MR | Zbl

[21] R.A. Fischer, “The wave of advance of advantageous genes”, Ann. Eugenics, 7 (1937), 355–369 | DOI