Mots-clés : perturbation
@article{UFA_2023_15_3_a3,
author = {L. A. Kalyakin},
title = {Perturbation of a simple wave: from simulation to asymptotics},
journal = {Ufa mathematical journal},
pages = {54--68},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a3/}
}
L. A. Kalyakin. Perturbation of a simple wave: from simulation to asymptotics. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 54-68. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a3/
[1] A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, “Study of diffusion equation related with growth of matter and its application to one biological problem”, Bull. MGU. Matem. Mekh., 1:6 (1937), 1–25 (in Russian) | Zbl
[2] J.D. Murray, Lectures on nonlinear-differential-equations models in biology, Clarendon Press, Oxford, 1977
[3] V.G. Danilov, V.P. Maslov, K.A. Volosov, Mathematical modelling of heat and mass transfer processes, Kluwer Academic Publ., Dordrecht, 1995 | MR | Zbl
[4] V.G. Danilov, “Global formulas for solutions of quasilinear parabolic equations with a small parameter and ill-posedness”, Matem. Zamet., 46:1 (1989), 115–117 (in Russian) | MR | Zbl
[5] V.G. Danilov, “Asymptotic solutions of traveling wave type for semilinear parabolic equations with a small parameter”, Matem. Zamet., 48:2 (1990), 148–151 (in Russian) | MR | Zbl
[6] L.A. Kalyakin, “Perturbation of a simple wave in a system with dissipation”, Math. Notes, 112:4 (2022), 549–560 | DOI | DOI | MR | Zbl
[7] A.K. Zvezdin, “Dynamics of domain walls in weak ferromagnets”, JETP Lett., 29:10 (1979), 553–557
[8] Z.V. Gareeva, X.M. Chen, “Ultrafast dynamics of domain walls in antiferromagnets and ferrimagnets with temperatures of compensation of the magnetic moment and angular momentum (brief review)”, J. Exp. Theor. Phys. Lett., 114:4 (2021), 215–226 | DOI | MR
[9] I.Ya. Kanel', “Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory”, Matem. Sborn., 59:101 (1962), 245–288 (in Russian) | Zbl
[10] K. Uchiyama, “The behavior of solutions of some non-linear diffusion equations for large time”, J. Math. Kyoto Univ., 18:3 (1978), 453–508 | MR | Zbl
[11] T.B. Shapaeva, R.R. Murtazin, E.G. Ekomasov, “Dynamics of domain walls under the action of pulse and gradient magnetic fields in rare-earth orthoferrites”, Bull. Russ. Acad. Sci: Phys., 78:2 (2014), 88–91 | DOI | DOI | MR
[12] L.A. Kalyakin, “Phantom asymptotic solutions”, Ufa Math. J., 6:2 (2014), 44–65 | DOI | MR
[13] V.I. Karpman, E.M. Maslov, “Perturbation theory for solitons”, Soviet Physics-JETP, 46:2 (1977), 281–291 | MR
[14] E.M. Maslov, “Perturbation theory for solitons in the second approximation”, Theor. Math. Phys., 42:3 (1980), 237–245 | DOI | MR
[15] A.C. Newell, “The inverse scattering transform”, Solitons, eds. R.K. Bullough, P.J. Caudrey, Springer-Verlag, Berlin, 1980, 177–242 | DOI | MR
[16] V.P. Maslov, G.A. Omel'yanov, “Asymptotic soliton-form solutions of equations with small dispersion”, Russ. Math. Surv., 36:3 (1981), 73–149 | DOI | MR | Zbl | Zbl
[17] L.A. Kalyakin, “Perturbation of the Korteweg-de Vries soliton”, Theor. Math. Phys., 92:1 (1992), 736–747 | DOI | MR | Zbl
[18] L.A. Kalyakin, “On the problem of first correction in soliton perturbation theory”, Sb. Math., 186:7 (1995), 977–1002 | DOI | MR | Zbl
[19] A.H. Nayfeh, Perturbation methods, A Wiley-Interscience Publ., New York, 1973 | MR | Zbl
[20] N.N. Bogolyubov, Yu.A. Mitropol'skij, Asymptotic methods in the theory of non-linear oscillations, Hindustan Publishing Corp., Delhi; Gordon and Breach Science Publ., New York, 1961 | MR | MR | Zbl
[21] R.A. Fischer, “The wave of advance of advantageous genes”, Ann. Eugenics, 7 (1937), 355–369 | DOI