@article{UFA_2023_15_3_a2,
author = {A. A. Ershov},
title = {Bilinear interpolation of program control in approach problem},
journal = {Ufa mathematical journal},
pages = {41--53},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a2/}
}
A. A. Ershov. Bilinear interpolation of program control in approach problem. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 41-53. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a2/
[1] E.B. Lee, L. Markus, Foundations of optimal control theory, Wiley, New York, 1967 | MR | Zbl
[2] N.N. Krasovskij. Game problems on the encounter of motions, Nauka, M., 1970 (in Russian)
[3] N.N. Krasovskij, A.I. Subbotin, Game-theoretical control problems, Springer-Verlag, New York, 1988 | MR
[4] V.M. Veliov, Parametric and functional uncertainties in dynamic systems local and global relationship, Computer Arithmetic and Enclosure Methods, North–Holland, Amsterdam, 1992 | MR | Zbl
[5] A.B. Kurzhansky, Control and observation under uncertainty, Nauka, M., 1977 (in Russian)
[6] A.A. Ershov, V.N. Ushakov, “An approach problem for a control system with an unknown parameter”, Sb. Math., 208:9 (2017), 1312–1352 | DOI | DOI | MR | Zbl
[7] V.N. Ushakov, A.A. Ershov, A.V. Ushakov, “An Approach Problem with an Unknown Parameter and Inaccurately Measured Motion of the System”, IFAC-PapersOnLine, 51:32 (2018), 234–238 | DOI
[8] M.S. Nikol'skii, “A control problem with a partially known initial condition”, Comput. Math. Model., 28:1 (2017), 12–17 | DOI | MR | Zbl
[9] S.S. Lemak, “Formation of positional strategies for a differential game in Krasovskii's method of extremal aiming”, Moscow Univ. Mech. Bull., 70:6 (2015), 157–160 | DOI | Zbl
[10] V.N. Ushakov, A.R. Matviychuk, G.V. Parshikov, “A method for constructing a resolving control in an approach problem based on attraction to the solvability set”, Proc. Steklov Inst. Math., 284, Suppl. 1 (2014), 135–144 | DOI | MR
[11] A.A. Ershov, “Linear parameter interpolation of a program control in the approach problem”, J. Math. Sci., 260:6 (2022), 725–737 | DOI | MR | Zbl
[12] A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, Amer. Inst. Math. Sci., New York, 2007 | MR | MR | Zbl
[13] S.G. Mikhlin, Mathematical physics, an advanced course, North-Holland Publ. Co., Amsterdam, 1970 | MR
[14] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobel'kov, Numerical methods, Nauka, M., 1987 (in Russian) | MR
[15] V.N. Ushakov, A.A. Ershov, “On the solution of control problems with fixed terminal time”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:4 (2016), 543–564 (in Russian) | MR | Zbl
[16] P.I. Lizorkin, Course of differential and integral equations with additional chapters of analysis, Nauka, M., 1981 (in Russian)
[17] A.O. Novikova, “Construction of reachibility sets for two-dimensional nonlinear controlled system by pixel method”, Prikl. Matem. Inform. Trudy VMK MGU, 50 (2015), 62–82 (in Russian)