Vector form of Kundu–Eckhaus equation and its simplest solutions
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 148-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nowadays, new vector integrable models of nonlinear optics are actively investigated. This is motivated by a need to transmit more information per unit of time by using polarized waves. In our work we study one of such models and we construct an hierarchy of integrable vector nonlinear differential equations depending on the functional parameter $r$ by using a monodromy matrix. The first equation of this hierarchy for $r=\alpha(\mathbf{p}^t\mathbf{q})$ is a vector analogue of the Kundu–Eckhaus equation. As $\alpha=0$, the equations of this hierarchy turn into equations of the Manakov system hierarchy. Other values of the functional parameter $r$ correspond to other integrable nonlinear equations. New elliptic solutions to the vector analogue of the Kundu–Eckhaus and Manakov system are presented. We also give an example of a two-gap solution of these equations in the form of a solitary wave. We show that there exist linear transformations of solutions to the vector integrable nonlinear equations into other solutions to the same equations. This statement is true for many vector integrable nonlinear equations. In particular, this is true for multicomponent derivative nonlinear Schrödinger equations and for the Kulish-Sklyanin equation. Therefore, the corresponding Baker-Akhiezer function can be constructed from a spectral curve only up to a linear transformation. In conclusion, we show that the spectral curves of the finite-gap solutions of the Manakov system and the Kundu–Eckhaus vector equation are trigonal curves whose genus is twice the number of phases of the finite-gap solution, that is, in the finite-gap solutions of the Manakov system and the vector analogue of the Kundu–Eckhaus equation, only half of the phases contain the variables $t$, $z_1,\dots,z_n$. The second half of the phases depends on the parameters of the solutions.
Keywords: spectral curve, derivative nonlinear Schrödinger equation, vector integrable nonlinear equation.
Mots-clés : Monodromy matrix
@article{UFA_2023_15_3_a11,
     author = {A. O. Smirnov and A. A. Caplieva},
     title = {Vector form of {Kundu{\textendash}Eckhaus} equation and its simplest solutions},
     journal = {Ufa mathematical journal},
     pages = {148--163},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a11/}
}
TY  - JOUR
AU  - A. O. Smirnov
AU  - A. A. Caplieva
TI  - Vector form of Kundu–Eckhaus equation and its simplest solutions
JO  - Ufa mathematical journal
PY  - 2023
SP  - 148
EP  - 163
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a11/
LA  - en
ID  - UFA_2023_15_3_a11
ER  - 
%0 Journal Article
%A A. O. Smirnov
%A A. A. Caplieva
%T Vector form of Kundu–Eckhaus equation and its simplest solutions
%J Ufa mathematical journal
%D 2023
%P 148-163
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a11/
%G en
%F UFA_2023_15_3_a11
A. O. Smirnov; A. A. Caplieva. Vector form of Kundu–Eckhaus equation and its simplest solutions. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 148-163. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a11/

[1] D.J. Kaup, A.C. Newell, “An exact solution for a Derivative Nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR | Zbl

[2] H.H. Chen, Y.C. Lee, C.S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Physica Scripta, 20:3-4 (1979), 490–492 | DOI | MR | Zbl

[3] V.S. Gerdjikov, M.I. Ivanov, “The quadratic bundle of general form and the nonlinear evolution equations. I. Expansions over the “squared” solutions are generalized Fourier transforms”, Bulgarian J. Phys., 10:1 (1983), 13–26 | MR | Zbl

[4] V.S. Gerdjikov, M.I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulgarian J. Phys., 10:2 (1983), 130–143 | MR | Zbl

[5] T. Tsuchida, M. Wadati, “Complete integrability of derivative nonlinear Schrödinger-type equations”, Inverse Problems, 15:5 (1999), 1363–1373 | DOI | MR | Zbl

[6] A.O. Smirnov, “Spectral curves for the derivative nonlinear Schrödinger equations”, Symmetry, 13:7 (2021), 1203 | DOI

[7] S. Arshed, A. Biswas, M. Abdelaty, Q. Zhou, S.P. Moshokoa, M. Belic, “Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms”, Optik, 172 (2018), 766–771 | DOI | MR

[8] A.J.M. Jawad, F.J.I. Al Azzawi, A. Biswas, S. Khan, Q. Zhou, S.P. Moshokoa, M.R. Belic, “Bright and singular optical solitons for Kaup-Newell equation with two fundamental integration norms”, Optik, 182 (2019), 594–597 | DOI

[9] B. Yang, J. Chen, J. Yang, “Rogue waves in the generalized derivative nonlinear Schrödinger equations”, J. Nonl. Sci., 30 (2020), 3027–3056 | DOI | MR | Zbl

[10] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions”, J. Nonl. Sci., 30 (2020), 3089–3127 | DOI | MR | Zbl

[11] W. Peng, J. Pu, Y. Chen, “PINN deep learning for the Chen-Lee-Liu equation: Rogue wave on the periodic background”, Comm. Nonl. Sci. Numer. Simul., 105 (2022), 106067 | DOI | MR | Zbl

[12] H.M. Ahmed, W.B. Rabie, M.A. Ragusa, “Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method”, Anal. Math. Phys., 11:1 (2021), 23 | DOI | MR | Zbl

[13] A. Kundu, “Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR

[14] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability: I”, Inverse Problems, 3:2 (1987), 229–262 | DOI | MR | Zbl

[15] A. Kundu, “Integrable hierarchy of higher nonlinear Schrödinger type equations”, SIGMA, 2 (2006), 078 | MR | Zbl

[16] C. Zhang, C. Li, J. He, “Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation”, Math. Meth. Appl. Sci., 38:11 (2015), 2411–2425 | DOI | MR | Zbl

[17] Y. Zhang, N. Wang, D. Qiu, J. He, “Explicit solitons of Kundu equation derived by Riemann-Hilbert problem”, Phys. Lett. A, 452 (2022), 128476 | DOI | MR | Zbl

[18] J.-V. Goossens, M.I. Yousefi, Y. Jaouën, H. Haffermann, “Polarization-division multiplexing based on the nonlinear Fourier transform”, Optic Express, 25:22 (2017), 26437–26452 | DOI

[19] S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, “Dual polarization nonlinear Fourier transform-based optical communication system”, Optica, 5:3 (2018), 263–270 | DOI

[20] S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, “Experimental demonstration of nonlinear frequency division multiplexing transmission with neural network receiver”, J. Lightwave Techn., 38:23 (2020), 6465–6473 | DOI

[21] S.V. Manakov, “On the theory of two-dimensional stationary self-focussing of electromagnetic waves”, Sov. Phys. JETP, 38:2 (1974), 248–253

[22] J.C. Eilbeck, V.Z. Enol'skii, N.A. Kostov, “Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations”, J. Math. Phys., 41:12 (2000), 8236 | DOI | MR | Zbl

[23] J.N. Elgin, V.Z. Enol'skii, A.R. Its, “Effective integration of the nonlinear vector Schrödinger equation”, Physica D, 225:2 (2007), 127–152 | DOI | MR | Zbl

[24] O.H. Warren, J.N. Elgin, “The vector nonlinear Schrödinger hierarchy”, Physica D, 228:2 (2007), 166–171 | DOI | MR | Zbl

[25] V.S. Gerdjikov, A.O. Smirnov, V.B. Matveev, “From generalized Fourier transforms to spectral curves for the Manakov hierarchy. I. Generalized Fourier transforms”, Eur. Phys. J. Plus, 135 (2020), 659 | DOI

[26] A.O. Smirnov, V.S. Gerdjikov, V.B. Matveev, “From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy”, Eur. Phys. J. Plus, 135 (2020), 561 | DOI

[27] H.C. Morris, R.K. Dodd, “The two component derivative nonlinear Schrödinger equation”, Physica Scripta, 20:3-4 (1979), 505 | DOI | MR | Zbl

[28] T. Xu, B. Tian, C. Zhang, X.-H. Meng, X. Lu, “Alfvén solitons in the coupled derivative nonlinear Schrödinger system with symbolic computation”, J. Phys. A, 42:41 (2009), 415201 | DOI | MR | Zbl

[29] L. Ling, Q.P. Liu, “Darboux transformation for a two-component derivative nonlinear Schrödinger equation”, J. Phys. A, 43:43 (2010), 434023 | DOI | MR | Zbl

[30] H.N. Chan, B.A. Malomed, K.W. Chow, E. Ding, “Rogue waves for a system of coupled derivative nonlinear Schrödinger equations”, Phys. Rev. E, 93:1 (2016), 012217 | DOI | MR

[31] L. Guo, L. Wang, Y. Cheng, J. He, “Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation”, Comm. Nonl. Sci. Numer. Simul., 79 (2019), 104915 | DOI | MR | Zbl

[32] B.A. Dubrovin, “Matrix finite-zone operators”, J. Soviet Math., 28:1 (1985), 20–50 | DOI | Zbl

[33] E.T. Whittaker, J.N. Watson, Course of modern analysis, Cambridge University Press, Cambridge, 1915 | MR

[34] P. Appell, “Sur la transformation des équations différentielles linéaires”, Comptes Rendus, XCI (1880), 211–214

[35] Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl | Zbl

[36] M. Abramowitz, I.A. Stegun (Editors), Handbook of mathematical functions with formulae, graphs and mathematical tables, Willey-Interscience, New York, 1972 | MR

[37] S.P. Novikov, “The periodic problem for the Korteweg-de Vries equation. I”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[38] Sov. Math., Dokl., 15 (1974), 1597–1601 | MR | Zbl

[39] T. Woodcock, O.H. Warren, J.N. Elgin, “Genus two finite gap solutions to the vector nonlinear Schrödinger equation”, J. Phys. A, 40:17 (2007), F355–F361 | DOI | MR | Zbl

[40] P.L. Christiansen, J.C. Eilbeck, V.Z. Enol'skii, N.A. Kostov, “Quasi-periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type”, Proc. R. Soc. Lond. Ser A, 456 (2000), 2263–2281 | DOI | MR | Zbl

[41] C. Kalla, “Breathers and solitons of generalized nonlinear Schrödinger equation as degenerations of algebro-geometric solutions”, J. Phys. A, 44:33 (2011), 335210 | DOI