Mots-clés : Monodromy matrix
@article{UFA_2023_15_3_a11,
author = {A. O. Smirnov and A. A. Caplieva},
title = {Vector form of {Kundu{\textendash}Eckhaus} equation and its simplest solutions},
journal = {Ufa mathematical journal},
pages = {148--163},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a11/}
}
A. O. Smirnov; A. A. Caplieva. Vector form of Kundu–Eckhaus equation and its simplest solutions. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 148-163. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a11/
[1] D.J. Kaup, A.C. Newell, “An exact solution for a Derivative Nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR | Zbl
[2] H.H. Chen, Y.C. Lee, C.S. Liu, “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Physica Scripta, 20:3-4 (1979), 490–492 | DOI | MR | Zbl
[3] V.S. Gerdjikov, M.I. Ivanov, “The quadratic bundle of general form and the nonlinear evolution equations. I. Expansions over the “squared” solutions are generalized Fourier transforms”, Bulgarian J. Phys., 10:1 (1983), 13–26 | MR | Zbl
[4] V.S. Gerdjikov, M.I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulgarian J. Phys., 10:2 (1983), 130–143 | MR | Zbl
[5] T. Tsuchida, M. Wadati, “Complete integrability of derivative nonlinear Schrödinger-type equations”, Inverse Problems, 15:5 (1999), 1363–1373 | DOI | MR | Zbl
[6] A.O. Smirnov, “Spectral curves for the derivative nonlinear Schrödinger equations”, Symmetry, 13:7 (2021), 1203 | DOI
[7] S. Arshed, A. Biswas, M. Abdelaty, Q. Zhou, S.P. Moshokoa, M. Belic, “Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms”, Optik, 172 (2018), 766–771 | DOI | MR
[8] A.J.M. Jawad, F.J.I. Al Azzawi, A. Biswas, S. Khan, Q. Zhou, S.P. Moshokoa, M.R. Belic, “Bright and singular optical solitons for Kaup-Newell equation with two fundamental integration norms”, Optik, 182 (2019), 594–597 | DOI
[9] B. Yang, J. Chen, J. Yang, “Rogue waves in the generalized derivative nonlinear Schrödinger equations”, J. Nonl. Sci., 30 (2020), 3027–3056 | DOI | MR | Zbl
[10] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions”, J. Nonl. Sci., 30 (2020), 3089–3127 | DOI | MR | Zbl
[11] W. Peng, J. Pu, Y. Chen, “PINN deep learning for the Chen-Lee-Liu equation: Rogue wave on the periodic background”, Comm. Nonl. Sci. Numer. Simul., 105 (2022), 106067 | DOI | MR | Zbl
[12] H.M. Ahmed, W.B. Rabie, M.A. Ragusa, “Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method”, Anal. Math. Phys., 11:1 (2021), 23 | DOI | MR | Zbl
[13] A. Kundu, “Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR
[14] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability: I”, Inverse Problems, 3:2 (1987), 229–262 | DOI | MR | Zbl
[15] A. Kundu, “Integrable hierarchy of higher nonlinear Schrödinger type equations”, SIGMA, 2 (2006), 078 | MR | Zbl
[16] C. Zhang, C. Li, J. He, “Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation”, Math. Meth. Appl. Sci., 38:11 (2015), 2411–2425 | DOI | MR | Zbl
[17] Y. Zhang, N. Wang, D. Qiu, J. He, “Explicit solitons of Kundu equation derived by Riemann-Hilbert problem”, Phys. Lett. A, 452 (2022), 128476 | DOI | MR | Zbl
[18] J.-V. Goossens, M.I. Yousefi, Y. Jaouën, H. Haffermann, “Polarization-division multiplexing based on the nonlinear Fourier transform”, Optic Express, 25:22 (2017), 26437–26452 | DOI
[19] S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, “Dual polarization nonlinear Fourier transform-based optical communication system”, Optica, 5:3 (2018), 263–270 | DOI
[20] S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, “Experimental demonstration of nonlinear frequency division multiplexing transmission with neural network receiver”, J. Lightwave Techn., 38:23 (2020), 6465–6473 | DOI
[21] S.V. Manakov, “On the theory of two-dimensional stationary self-focussing of electromagnetic waves”, Sov. Phys. JETP, 38:2 (1974), 248–253
[22] J.C. Eilbeck, V.Z. Enol'skii, N.A. Kostov, “Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations”, J. Math. Phys., 41:12 (2000), 8236 | DOI | MR | Zbl
[23] J.N. Elgin, V.Z. Enol'skii, A.R. Its, “Effective integration of the nonlinear vector Schrödinger equation”, Physica D, 225:2 (2007), 127–152 | DOI | MR | Zbl
[24] O.H. Warren, J.N. Elgin, “The vector nonlinear Schrödinger hierarchy”, Physica D, 228:2 (2007), 166–171 | DOI | MR | Zbl
[25] V.S. Gerdjikov, A.O. Smirnov, V.B. Matveev, “From generalized Fourier transforms to spectral curves for the Manakov hierarchy. I. Generalized Fourier transforms”, Eur. Phys. J. Plus, 135 (2020), 659 | DOI
[26] A.O. Smirnov, V.S. Gerdjikov, V.B. Matveev, “From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy”, Eur. Phys. J. Plus, 135 (2020), 561 | DOI
[27] H.C. Morris, R.K. Dodd, “The two component derivative nonlinear Schrödinger equation”, Physica Scripta, 20:3-4 (1979), 505 | DOI | MR | Zbl
[28] T. Xu, B. Tian, C. Zhang, X.-H. Meng, X. Lu, “Alfvén solitons in the coupled derivative nonlinear Schrödinger system with symbolic computation”, J. Phys. A, 42:41 (2009), 415201 | DOI | MR | Zbl
[29] L. Ling, Q.P. Liu, “Darboux transformation for a two-component derivative nonlinear Schrödinger equation”, J. Phys. A, 43:43 (2010), 434023 | DOI | MR | Zbl
[30] H.N. Chan, B.A. Malomed, K.W. Chow, E. Ding, “Rogue waves for a system of coupled derivative nonlinear Schrödinger equations”, Phys. Rev. E, 93:1 (2016), 012217 | DOI | MR
[31] L. Guo, L. Wang, Y. Cheng, J. He, “Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation”, Comm. Nonl. Sci. Numer. Simul., 79 (2019), 104915 | DOI | MR | Zbl
[32] B.A. Dubrovin, “Matrix finite-zone operators”, J. Soviet Math., 28:1 (1985), 20–50 | DOI | Zbl
[33] E.T. Whittaker, J.N. Watson, Course of modern analysis, Cambridge University Press, Cambridge, 1915 | MR
[34] P. Appell, “Sur la transformation des équations différentielles linéaires”, Comptes Rendus, XCI (1880), 211–214
[35] Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl | Zbl
[36] M. Abramowitz, I.A. Stegun (Editors), Handbook of mathematical functions with formulae, graphs and mathematical tables, Willey-Interscience, New York, 1972 | MR
[37] S.P. Novikov, “The periodic problem for the Korteweg-de Vries equation. I”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[38] Sov. Math., Dokl., 15 (1974), 1597–1601 | MR | Zbl
[39] T. Woodcock, O.H. Warren, J.N. Elgin, “Genus two finite gap solutions to the vector nonlinear Schrödinger equation”, J. Phys. A, 40:17 (2007), F355–F361 | DOI | MR | Zbl
[40] P.L. Christiansen, J.C. Eilbeck, V.Z. Enol'skii, N.A. Kostov, “Quasi-periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type”, Proc. R. Soc. Lond. Ser A, 456 (2000), 2263–2281 | DOI | MR | Zbl
[41] C. Kalla, “Breathers and solitons of generalized nonlinear Schrödinger equation as degenerations of algebro-geometric solutions”, J. Phys. A, 44:33 (2011), 335210 | DOI