Genetic algorithm applied to fractional optimal control of a diabetic patient
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 129-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Diabetes is a dangerous disease that increases in incidence every year. The aim of this paper is to present and analyze the model of diabetes and its complications with the fractional derivative of Caputo, namely, we propose a mathematical model with a fractional derivative of the type 2 diabetes. The positivity and boundedness of the solutions is demonstrated by the Laplace transform method. We study the existence and uniqueness of the solution of the system. We use the genetic algorithm (GA) to solve the fractional differential equation model and to characterize the optimal control and this is an efficient and simple metaheuristic method to implement. Simulations of the total number of diabetics with the different values of a parameter $\alpha$ show that the combined control strategy leads to a significant decrease. The simulation results also show that the number of uncomplicated diabetics in the fractional model, for the different fractional values of $\alpha$, decreases more rapidly than the integer derivative model.
Keywords: diabetic population dynamic system, optimal control, fractional derivative, genetic algorithm, artificial intelligent.
@article{UFA_2023_15_3_a10,
     author = {A. El Ouissari and K. El Moutaouakil},
     title = {Genetic algorithm applied to fractional optimal control of a diabetic patient},
     journal = {Ufa mathematical journal},
     pages = {129--147},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/}
}
TY  - JOUR
AU  - A. El Ouissari
AU  - K. El Moutaouakil
TI  - Genetic algorithm applied to fractional optimal control of a diabetic patient
JO  - Ufa mathematical journal
PY  - 2023
SP  - 129
EP  - 147
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/
LA  - en
ID  - UFA_2023_15_3_a10
ER  - 
%0 Journal Article
%A A. El Ouissari
%A K. El Moutaouakil
%T Genetic algorithm applied to fractional optimal control of a diabetic patient
%J Ufa mathematical journal
%D 2023
%P 129-147
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/
%G en
%F UFA_2023_15_3_a10
A. El Ouissari; K. El Moutaouakil. Genetic algorithm applied to fractional optimal control of a diabetic patient. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 129-147. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/

[1] A. Mahata, S. P. Mondal, S. Alam, A. Chakraborty, S. K. De, and A. Goswami, “Mathematical model for diabetes in fuzzy environment with stability analysis”, J. Intel. Fuzzy Syst., 36:3 (2019), 2923–2932 | DOI | MR

[2] R. L. Ollerton, “Application of optimal control theory to diabetes mellitus”, Inter. J. Cont., 50:6 (1989), 2503–2522 | DOI | MR | Zbl

[3] G. W. Swan, “An optimal control model of diabetes mellitus”, Bull. Math. Bio., 44:6 (1982), 793–808 | DOI | MR | Zbl

[4] A.E. Ouissari, K.E. Moutaouakil, “Density based fuzzy support vector machine: application to diabetes dataset”, Math. Mod. Comp., 8:4 (2021), 747–760 | DOI

[5] M. S. Akhyani, H. Khaloozadeh, “Optimal glucose-insulin regulatory system in type1 diabetic patients based on the nonlinear time delay models”, J. Contr., 8:4 (2015), 31–41

[6] A. Boutayeb and A. Chetouani, “A population model of diabetes and pre-diabetes.”, Inter. J. Comp. Math., 84:1 (2007), 57–66 | DOI | MR | Zbl

[7] S. Gad, H. Metered, A. Bassuiny, A. M. Abdel Ghany, “Multi-objective genetic algorithm fractional-order PID controller for semi-active magnetorheologically damped seat suspension”, J. Vibr. Contr., 23:8 (2017), 1248–1266 | DOI | MR

[8] H. O. Florentino, D. R. Cantane, F. L. Santos, B. F. Bannwart, “Multiobjective genetic algorithm applied to dengue control”, Math. Biosc., 258:1 (2014), 77–84 | DOI | MR | Zbl

[9] A. Boutayeb, A. Chetouani, A. Achouyab, and E. H. Twizell, “A non-linear population model of diabetes mellitus”, J. App. Math. comp., 21:1 (2006), 127–139 | DOI | MR | Zbl

[10] K. E. Moutaouakil, M. Roudani, A. E. Ouissari, “Optimal Entropy Genetic Fuzzy-C-Means SMOTE (OEGFCM-SMOTE)”, Know. Bas. Sys., 262:1 (2023), 110235 | DOI

[11] T. T. Yusuf, “Optimal control of incidence of medical complications in a diabetic patients? population”, FUTA J. Res. Sci., 11:1 (2015), 180–189 | MR

[12] A. H. Permatasari, R. H. Tjahjana, T. Udjiani, “Existence and characterization of optimal control in mathematics model of diabetics population”, J. Phys. Conf. Ser., 983:1 (2018), 012069 | DOI

[13] A.A.M. Daud, C.Q. Toh, S. Saidun, “Development and analysis of a mathematical model for the population dynamics of Diabetes Mellitus during pregnancy”, Math. Models Comput. Simul., 12:1 (2020), 620–630 | DOI | MR

[14] A. Boutayeb, E. H. Twizell, K. Achouayb, and A. Chetouani, “A mathematical model for the burden of diabetes and its complications”, Biom. Engin. OnLine, 3:1 (2004), 1–8 | DOI

[15] A. Kouidere, O. Balatif, H. Ferjouchia, A. Boutayeb and M. Rachik, “Optimal control strategy for a discrete time to the dynamics of a population of diabetics with highlighting the impact of living environment”, Disc. Dyn. Nat. Soci., 2019:1 (2019), 1–8 | MR

[16] A. Kouidere, A. Labzai, H. Ferjouchia, O. Balatif and M. Rachik, “A new mathematical modeling with optimal control strategy for the dynamics of population of diabetics and its complications with effect of behavioral factors”, J. App. Math., 2020:1 (2020), 1–8 | MR

[17] A. Kouidere, B. Khajji, O. Balatif and M. Rachik, “A multi-age mathematical modeling of the dynamics of population diabetics with effect of lifestyle using optimal control”, J. App. Math. Compu., 67:1 (2021), 1–29 | MR

[18] M. Derouich, A. Boutayeb, W. Boutayeb, and M. Lamlili, “Optimal control approach to the dynamics of a population of diabetics”, App. Math. Sci., 8:56 (2014), 2773–2782

[19] H. M. Srivastava, R. Shanker Dubey, M. Jain, “A study of the fractional-order mathematical model of diabetes and its resulting complications”, Math. Meth. App. Sci., 42:13 (2019), 4570–4583 | DOI | MR | Zbl

[20] M. Goharimanesh, A. Lashkaripour, A. Abouei Mehrizi, “Fractional order PID controller for diabetes patients”, J. Comp. App. Mech., 46:1 (2015), 69–76

[21] J. Singh, D. Kumar, D. Baleanu, “On the analysis of fractional diabetes model with exponential law”, Adv. Dif. Equa., 2018:1 (2018), 1–15 | DOI | MR

[22] A. Jajarmi, B. Ghanbari, D. Baleanu, “A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence”, Chaos: An Inter. J. Nonlin. Sci., 29:9 (2019), 093111 | DOI | MR | Zbl

[23] A. Kouidere, L. E. Youssoufi, H. Ferjouchia, O. Balatif, M. Rachik, “Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness”, Chao. Sol. Frac., 145:1 (2021), 110777 | DOI | MR

[24] A. Omame, U. K. Nwajeri, M. Abbas, C. P. Onyenegecha, “A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function”, Alexandria Engin. J., 61:10 (2022), 7619–7635 | DOI

[25] F. Hayes-Roth, “Review of Adaptation in Natural and Artificial Systems by John H. Holland”, The U. Mich. Press., 53:1 (1975), 15–15 | MR

[26] L. B. Booker, D. E. Goldberg, J. H. Holland, “Classifier systems and genetic algorithms”, Artif. intel., 40:3 (1989), 235–282 | DOI

[27] K. Krishnakumar, D. E. Goldberg, “Control system optimization using genetic algorithms”, J. Guid. Contr. Dynam., 15:3 (1992), 735–740 | DOI | Zbl

[28] Z. Michalewicz, C. Z. Janikow, J. B. Krawczyk, “A modified genetic algorithm for optimal control problems”, Comp. Math. App., 23:12 (1992), 83–94 | DOI | Zbl

[29] N. Marco, C. Godart, J. A. Dsidri, B. Mantel, J. Priaux, A genetic algorithm compared with a gradient-based method for the solution of an active-control model problem, Preprint RR-2948, inria-00073751, INRIA, 1996

[30] I. C. Lerman, R. Ngouenet, Algorithmes génétiques séquentiels et parallèles pour une représentation affine des proximités, Preprint RR-2570, inria-00074111, INRIA, 1995

[31] L. Rarita, I. Stamova, S. Tomasiello, “Numerical schemes and genetic algorithms for the optimal control of a continuous model of supply chains”, App. Math. Comp., 388:1 (2021), 125464 | DOI | MR | Zbl

[32] K. E. Moutaouakil, A. E. Ouissari, H. Baizri, S. Chellak and M. Cheggour, “Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic”, RAIRO-Oper. Res., 56:5 (2022), 3245–3256 | DOI | MR | Zbl

[33] D. Castaldo, M. Rosa, S. Corni, “Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization”, Phys. Rev., 103:2 (2021), 022613 | DOI

[34] J. Wang, J. Hou, J. Chen, Q. Fu, G. Huang, “Data mining approach for improving the optimal control of HVAC systems: An event-driven strategy”, J. Buil. Engin., 39:1 (2021), 102246 | DOI

[35] H. H. Mehne, S. Mirjalili, “A parallel numerical method for solving optimal control problems based on whale optimization algorithm”, Know. Bas. Sys., 151:1 (2018), 114–123 | DOI

[36] M. I. Gomoyunov, “On representation formulas for solutions of linear differential equations with Caputo fractional derivatives”, Frac. Calc. App. Anal., 23:4 (2020), 1141–1160 | DOI | MR | Zbl

[37] I. Ameen, D. Baleanu, H. M. Ali, “An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment”, Chaos, Solitons Fractals, 137:1 (2020), 109892 | DOI | MR | Zbl

[38] E. O. Abdellatif, E. M. Karim, B. Hicham, C. Saliha, “Intelligent local search for an optimal control of diabetic population dynamics”, Math. Mod. Comp. Simul., 14:6 (2022), 1051–1071 | DOI | MR