@article{UFA_2023_15_3_a10,
author = {A. El Ouissari and K. El Moutaouakil},
title = {Genetic algorithm applied to fractional optimal control of a diabetic patient},
journal = {Ufa mathematical journal},
pages = {129--147},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/}
}
TY - JOUR AU - A. El Ouissari AU - K. El Moutaouakil TI - Genetic algorithm applied to fractional optimal control of a diabetic patient JO - Ufa mathematical journal PY - 2023 SP - 129 EP - 147 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/ LA - en ID - UFA_2023_15_3_a10 ER -
A. El Ouissari; K. El Moutaouakil. Genetic algorithm applied to fractional optimal control of a diabetic patient. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 129-147. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a10/
[1] A. Mahata, S. P. Mondal, S. Alam, A. Chakraborty, S. K. De, and A. Goswami, “Mathematical model for diabetes in fuzzy environment with stability analysis”, J. Intel. Fuzzy Syst., 36:3 (2019), 2923–2932 | DOI | MR
[2] R. L. Ollerton, “Application of optimal control theory to diabetes mellitus”, Inter. J. Cont., 50:6 (1989), 2503–2522 | DOI | MR | Zbl
[3] G. W. Swan, “An optimal control model of diabetes mellitus”, Bull. Math. Bio., 44:6 (1982), 793–808 | DOI | MR | Zbl
[4] A.E. Ouissari, K.E. Moutaouakil, “Density based fuzzy support vector machine: application to diabetes dataset”, Math. Mod. Comp., 8:4 (2021), 747–760 | DOI
[5] M. S. Akhyani, H. Khaloozadeh, “Optimal glucose-insulin regulatory system in type1 diabetic patients based on the nonlinear time delay models”, J. Contr., 8:4 (2015), 31–41
[6] A. Boutayeb and A. Chetouani, “A population model of diabetes and pre-diabetes.”, Inter. J. Comp. Math., 84:1 (2007), 57–66 | DOI | MR | Zbl
[7] S. Gad, H. Metered, A. Bassuiny, A. M. Abdel Ghany, “Multi-objective genetic algorithm fractional-order PID controller for semi-active magnetorheologically damped seat suspension”, J. Vibr. Contr., 23:8 (2017), 1248–1266 | DOI | MR
[8] H. O. Florentino, D. R. Cantane, F. L. Santos, B. F. Bannwart, “Multiobjective genetic algorithm applied to dengue control”, Math. Biosc., 258:1 (2014), 77–84 | DOI | MR | Zbl
[9] A. Boutayeb, A. Chetouani, A. Achouyab, and E. H. Twizell, “A non-linear population model of diabetes mellitus”, J. App. Math. comp., 21:1 (2006), 127–139 | DOI | MR | Zbl
[10] K. E. Moutaouakil, M. Roudani, A. E. Ouissari, “Optimal Entropy Genetic Fuzzy-C-Means SMOTE (OEGFCM-SMOTE)”, Know. Bas. Sys., 262:1 (2023), 110235 | DOI
[11] T. T. Yusuf, “Optimal control of incidence of medical complications in a diabetic patients? population”, FUTA J. Res. Sci., 11:1 (2015), 180–189 | MR
[12] A. H. Permatasari, R. H. Tjahjana, T. Udjiani, “Existence and characterization of optimal control in mathematics model of diabetics population”, J. Phys. Conf. Ser., 983:1 (2018), 012069 | DOI
[13] A.A.M. Daud, C.Q. Toh, S. Saidun, “Development and analysis of a mathematical model for the population dynamics of Diabetes Mellitus during pregnancy”, Math. Models Comput. Simul., 12:1 (2020), 620–630 | DOI | MR
[14] A. Boutayeb, E. H. Twizell, K. Achouayb, and A. Chetouani, “A mathematical model for the burden of diabetes and its complications”, Biom. Engin. OnLine, 3:1 (2004), 1–8 | DOI
[15] A. Kouidere, O. Balatif, H. Ferjouchia, A. Boutayeb and M. Rachik, “Optimal control strategy for a discrete time to the dynamics of a population of diabetics with highlighting the impact of living environment”, Disc. Dyn. Nat. Soci., 2019:1 (2019), 1–8 | MR
[16] A. Kouidere, A. Labzai, H. Ferjouchia, O. Balatif and M. Rachik, “A new mathematical modeling with optimal control strategy for the dynamics of population of diabetics and its complications with effect of behavioral factors”, J. App. Math., 2020:1 (2020), 1–8 | MR
[17] A. Kouidere, B. Khajji, O. Balatif and M. Rachik, “A multi-age mathematical modeling of the dynamics of population diabetics with effect of lifestyle using optimal control”, J. App. Math. Compu., 67:1 (2021), 1–29 | MR
[18] M. Derouich, A. Boutayeb, W. Boutayeb, and M. Lamlili, “Optimal control approach to the dynamics of a population of diabetics”, App. Math. Sci., 8:56 (2014), 2773–2782
[19] H. M. Srivastava, R. Shanker Dubey, M. Jain, “A study of the fractional-order mathematical model of diabetes and its resulting complications”, Math. Meth. App. Sci., 42:13 (2019), 4570–4583 | DOI | MR | Zbl
[20] M. Goharimanesh, A. Lashkaripour, A. Abouei Mehrizi, “Fractional order PID controller for diabetes patients”, J. Comp. App. Mech., 46:1 (2015), 69–76
[21] J. Singh, D. Kumar, D. Baleanu, “On the analysis of fractional diabetes model with exponential law”, Adv. Dif. Equa., 2018:1 (2018), 1–15 | DOI | MR
[22] A. Jajarmi, B. Ghanbari, D. Baleanu, “A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence”, Chaos: An Inter. J. Nonlin. Sci., 29:9 (2019), 093111 | DOI | MR | Zbl
[23] A. Kouidere, L. E. Youssoufi, H. Ferjouchia, O. Balatif, M. Rachik, “Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness”, Chao. Sol. Frac., 145:1 (2021), 110777 | DOI | MR
[24] A. Omame, U. K. Nwajeri, M. Abbas, C. P. Onyenegecha, “A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function”, Alexandria Engin. J., 61:10 (2022), 7619–7635 | DOI
[25] F. Hayes-Roth, “Review of Adaptation in Natural and Artificial Systems by John H. Holland”, The U. Mich. Press., 53:1 (1975), 15–15 | MR
[26] L. B. Booker, D. E. Goldberg, J. H. Holland, “Classifier systems and genetic algorithms”, Artif. intel., 40:3 (1989), 235–282 | DOI
[27] K. Krishnakumar, D. E. Goldberg, “Control system optimization using genetic algorithms”, J. Guid. Contr. Dynam., 15:3 (1992), 735–740 | DOI | Zbl
[28] Z. Michalewicz, C. Z. Janikow, J. B. Krawczyk, “A modified genetic algorithm for optimal control problems”, Comp. Math. App., 23:12 (1992), 83–94 | DOI | Zbl
[29] N. Marco, C. Godart, J. A. Dsidri, B. Mantel, J. Priaux, A genetic algorithm compared with a gradient-based method for the solution of an active-control model problem, Preprint RR-2948, inria-00073751, INRIA, 1996
[30] I. C. Lerman, R. Ngouenet, Algorithmes génétiques séquentiels et parallèles pour une représentation affine des proximités, Preprint RR-2570, inria-00074111, INRIA, 1995
[31] L. Rarita, I. Stamova, S. Tomasiello, “Numerical schemes and genetic algorithms for the optimal control of a continuous model of supply chains”, App. Math. Comp., 388:1 (2021), 125464 | DOI | MR | Zbl
[32] K. E. Moutaouakil, A. E. Ouissari, H. Baizri, S. Chellak and M. Cheggour, “Multi-objectives optimization and convolution fuzzy C-means: control of diabetic population dynamic”, RAIRO-Oper. Res., 56:5 (2022), 3245–3256 | DOI | MR | Zbl
[33] D. Castaldo, M. Rosa, S. Corni, “Quantum optimal control with quantum computers: A hybrid algorithm featuring machine learning optimization”, Phys. Rev., 103:2 (2021), 022613 | DOI
[34] J. Wang, J. Hou, J. Chen, Q. Fu, G. Huang, “Data mining approach for improving the optimal control of HVAC systems: An event-driven strategy”, J. Buil. Engin., 39:1 (2021), 102246 | DOI
[35] H. H. Mehne, S. Mirjalili, “A parallel numerical method for solving optimal control problems based on whale optimization algorithm”, Know. Bas. Sys., 151:1 (2018), 114–123 | DOI
[36] M. I. Gomoyunov, “On representation formulas for solutions of linear differential equations with Caputo fractional derivatives”, Frac. Calc. App. Anal., 23:4 (2020), 1141–1160 | DOI | MR | Zbl
[37] I. Ameen, D. Baleanu, H. M. Ali, “An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment”, Chaos, Solitons Fractals, 137:1 (2020), 109892 | DOI | MR | Zbl
[38] E. O. Abdellatif, E. M. Karim, B. Hicham, C. Saliha, “Intelligent local search for an optimal control of diabetic population dynamics”, Math. Mod. Comp. Simul., 14:6 (2022), 1051–1071 | DOI | MR