Numerical solution of initial-boundary value problems for a multi-dimensional pseudoparabolic equation
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 13-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider initial boundary value problems for a multi-dimensional pseudoparabolic equation with Dirichlet boundary conditions of a special form. For an approximate solution of the considered problems, the multi-dimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the corresponding modified problem converges to the solution of the original problem. For each of the problems we construct a locally one-dimensional difference scheme following A.A. Samarskii. The main idea is to reduce the transition from a layer to a layer to the sequential solving a number of one-dimensional problems in each of the coordinate directions. Using the maximum principle, we obtain apriori estimates, which imply the uniqueness, stability, and convergence of the solution of a locally one-dimensional difference scheme in the uniform metric. We construct an algorithm for numerical solving of the modified problem with conditions of a special form.
Keywords: moisture transfer equation, integro-differential equation, initial boundary value problem, difference schemes, apriori estimates, stability and convergence.
Mots-clés : pseudoparabolic equation
@article{UFA_2023_15_3_a1,
     author = {M. KH. Beshtokov},
     title = {Numerical solution of initial-boundary value problems for a multi-dimensional pseudoparabolic equation},
     journal = {Ufa mathematical journal},
     pages = {13--40},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a1/}
}
TY  - JOUR
AU  - M. KH. Beshtokov
TI  - Numerical solution of initial-boundary value problems for a multi-dimensional pseudoparabolic equation
JO  - Ufa mathematical journal
PY  - 2023
SP  - 13
EP  - 40
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a1/
LA  - en
ID  - UFA_2023_15_3_a1
ER  - 
%0 Journal Article
%A M. KH. Beshtokov
%T Numerical solution of initial-boundary value problems for a multi-dimensional pseudoparabolic equation
%J Ufa mathematical journal
%D 2023
%P 13-40
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a1/
%G en
%F UFA_2023_15_3_a1
M. KH. Beshtokov. Numerical solution of initial-boundary value problems for a multi-dimensional pseudoparabolic equation. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 13-40. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a1/

[1] G.I. Barenblatt, Yu.P. Zheltov, I.N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)”, J. Appl. Math. Mech., 24 (1961), 1286–1303 | DOI | Zbl

[2] N.N. Kochina, “Regulation of the level of ground waters during irrigation”, Sov. Phys. Dokl., 18 (1973), 689–691 | MR | Zbl

[3] E.S. Dzektser, “Equations of motion of underground water with a free surface in stratified media”, DAN SSSR, 220:3 (1975), 540–543 (in Russian) | Zbl

[4] M. Hallaire, “Le potentiel efficace de l'eau dans le sol en regime de dessechement”, L'Eau et la Production Vegetale, 9, Institut National de la Recherche Agronomique, Paris, 1964, 27–62

[5] R.E. Showalter, T.W. Ting, “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1–26 | DOI | MR | Zbl

[6] A.F. Chudnovsky, Soil thermophysics, Nauka, M., 1976

[7] P.J. Chen, M.E. Curtin, “On a theory of heat conduction involving two temperatures”, J. Angew. Math. Phys., 19:4 (1968), 614–627 | DOI | Zbl

[8] S.V. Nerpin, A.F. Chudnovsky, Energy- and mass-transfer in a system plant-soil-air, Gidrometeoizdat, L., 1975 (in Russian)

[9] V.Z. Kanchukoev, “Boundary value problem for a third order equation of a mixed hyperbolic-pseudoparabolic type”, Differ. Uravn., 16:1 (1980), 177–178 (in Russian) | MR | Zbl

[10] V.Z. Kanchukoev, M.Kh. Shkhanukov, “Boundary value problems for heat and mass transfer equations and their approximation by stable difference schemes”, Boundary value problems for mixed type equations and related problems in functional analysis and applied mathematics, Coll. Sci. Works, v. 2, 1979, 143–150 (in Russian)

[11] D.L. Colton, “Pseudoparabolic equations in one space variable”, J. Diff. equat., 12:3 (1972), 559–565 | DOI | MR | Zbl

[12] B.D. Coleman, R.J. Duffin, V.J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation $u_t =u_{xx}-u_{xxt}$ on a strip”, Arch. Rat. Mech. Anal., 19:2 (1965), 100–116 | DOI | MR | Zbl

[13] M.Kh. Shkhanukov, “Boundary-value problems for a third-order equation occurring in the modeling of water filtration in porous media”, Diff. Equat., 18:4 (1982), 509–517 | MR | Zbl | Zbl

[14] T.W. Ting, “Certain non-steady flows of second-order fluids”, Arch. Ration Mech. Anal., 14:1 (1963), 1–26 | DOI | MR | Zbl

[15] V.A. Vodakhova, “A boundary-value problem with A. M. Nakhushev's nonlocal condition for a pseudoparabolic moisture-transfer equation”, Diff. Equats., 18:2 (1982), 226–229 | MR | Zbl | Zbl

[16] M.H. Beshtokov. Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations, Vestnik SamGTU. Ser. Fiz.-Mat. Nauki, 4:33 (2013), 1–10 (in Russian)

[17] A.G. Sveshnikov, A.B. Al'shin, M.O. Korpusov, Yu.D. Pletner, Linear and nonlinear equations of Sobolev type, Fizmatlit, M., 2007 (in Russian)

[18] A.P. Soldatov, M.Kh. Shkhanukov, “Boundary value problems with general nonlocal Samarskij condition for pseudoparabolic equations of higher order”, Sov. Math. Dokl., 36:3 (1988), 507–511 | MR | Zbl

[19] A.A. Samarskii, “On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region”, U.S.S.R. Comput. Math. Math. Phys., 2:5 (1963), 894–926 | DOI | MR | Zbl

[20] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001 | MR | Zbl

[21] A.A. Samarskii, A.V. Gulin, Stability of difference schemes, Nauka, M., 1973 (in Russian) | MR

[22] M.Kh. Beshtokov, “Finite difference method for a nonlocal boundary value problem for a third-order pseudoparabolic equation”, Diff. Equat., 49:9 (2013), 1134–1141 | DOI | MR | Zbl

[23] M.Kh. Beshtokov, “On the numerical solution of a nonlocal boundary value problem for a degenerating pseudoparabolic equation”, Diff. Equat., 52:10 (2016), 1341–1354 | DOI | DOI | MR | Zbl

[24] M.Kh. Beshtokov, “The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 12–19 | MR

[25] M.Kh. Beshtokov, “Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms”, Diff. Equat., 54:2 (2018), 250–267 | DOI | DOI | MR | Zbl

[26] M.Kh. Beshtokov, “Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative”, Comp. Math. Math. Phys., 59:2 (2019), 175–192 | DOI | DOI | MR | Zbl

[27] M.I. Vishik, L.A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Matem. Nauk, 12:5 (1957), 3–122

[28] S.K. Godunov, V.S. Ryabenk'ij, Difference schemes, Nauka, M., 1973 (in Russian) | MR

[29] O.A. Ladyzhenskaya, Boundary value problems of mathematical physics, Nauka, M., 1973 (in Russian) | MR

[30] M. Caputo, M. Fabrizio, “A New Definition of Fractional Derivative without Singular Kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 1–13 | MR