Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 3-12
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an asymptotic behavior of the sum of an entire Dirichlet series $F(s)=\sum\limits_{n}a_{n}e^{\lambda_{n}s}$, $0\lambda_{n}\uparrow\infty$, on curves of a bounded $K$-slope naturally going to infinity. For entire transcendental functions of finite order having the form $f(z)=\sum\limits_{n}a_{n}z^{p_{n}}$, $p_{n}\in\mathbb{N}$, Pólya showed that if the density of the sequence $\left\{p_{n}\right\}$ is zero, then for each curve $\gamma$ going to infinity there exists an unbounded sequence $\{\xi_{n}\}\subset\gamma$ such that, as $\xi_{n}\rightarrow\infty$, the relation holds: \begin{equation*} \ln M_{f}(|\xi_{n}|)\sim \ln\left|f(\xi_{n})\right|; \end{equation*} here $M_{f}(r)$ is the maximum of the absolute value of the function $f$. Later these results were completely extended by I.D. Latypov to entire Dirichlet series of finite order and finite lower order according in the Ritt sense. A further generalization was obtained in works by N.N. Yusupova–Aitkuzhina to more general classes $D(\Phi)$ and $\underline{D}(\Phi)$ defined by the convex majorant $\Phi$. In this paper we obtain necessary and sufficient conditions for the exponents $\lambda_{n}$ ensuring that the logarithm of the absolute value of the sum of any Dirichlet series from the class $\underline{D}(\Phi)$ on the curve $\gamma$ of a bounded $K$-slope is equivalent to the logarithm of the maximum term as $\sigma=\mathrm{Re}\, s\rightarrow +\infty$ over some asymptotic set, the upper density of which is one. We note that for entire Dirichlet series of an arbitrarily fast growth the corresponding result for the case of $\gamma =\mathbb{R}_+$ was obtained by A.M. Gaisin in 1998.
Keywords: Dirichlet series, curve of a bounded slope, asymptotic set.
Mots-clés : maximal term
@article{UFA_2023_15_3_a0,
     author = {N. N. Aitkuzhina and A. M. Gaisin and R. A. Gaisin},
     title = {Behavior of entire {Dirichlet} series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope},
     journal = {Ufa mathematical journal},
     pages = {3--12},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/}
}
TY  - JOUR
AU  - N. N. Aitkuzhina
AU  - A. M. Gaisin
AU  - R. A. Gaisin
TI  - Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope
JO  - Ufa mathematical journal
PY  - 2023
SP  - 3
EP  - 12
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/
LA  - en
ID  - UFA_2023_15_3_a0
ER  - 
%0 Journal Article
%A N. N. Aitkuzhina
%A A. M. Gaisin
%A R. A. Gaisin
%T Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope
%J Ufa mathematical journal
%D 2023
%P 3-12
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/
%G en
%F UFA_2023_15_3_a0
N. N. Aitkuzhina; A. M. Gaisin; R. A. Gaisin. Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/

[1] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzeihen”, Math. Z., 29 (1929), 549–640 | DOI | MR

[2] M.N. Sheremeta, “Growth on the real axis of an entire function represented by a Dirichlet series”, Math. Notes, 33:2 (1983), 119–124 | DOI | MR | Zbl

[3] A.M. Gaisin, “Behavior of the sum of a Dirichlet series having a prescribed growth”, Math. Notes, 50:4 (1991), 1018–1024 | DOI | MR | Zbl | Zbl

[4] A.M. Gaisin, I.D. Latypov, “Asymptotic behavior of the sum of the Dirichlet series of prescribed growth on curves”, Math. Notes, 78:1 (2005), 33–46 | DOI | DOI | MR | Zbl

[5] A.V. Leont'ev, Sequences of exponential polynomials, Nauka, M., 1980 (in Russian) | MR

[6] A.M. Gaisin, N.N. Yusupova, “Behaviour of the sum of Dirichlet series with a given majorant of a growth on curves”, Ufimskij Matem. Zhurn., 1:2 (2009), 17–28 (in Russian) | Zbl

[7] A.M. Gaisin, “Estimates of the growth and decrease on curves of an entire function of infinite order”, Sb. Math., 194:8 (2003), 1167–1194 | DOI | DOI | MR | Zbl

[8] A.M. Gaisin, R.A. Gaisin, “Incomplete system of exponentials on arcs and nonquasianalytic Carleman classes. II”, St.-Petersburg Math. J., 27:1 (2016), 33–50 | DOI | MR | Zbl

[9] R.A. Gaisin, “Interpolation sequences and nonspanning systems of exponentials on curves”, Sb. Math., 212:5 (2021), 655–675 | DOI | DOI | MR | Zbl

[10] A.F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR

[11] N.N. Yusupova, Asymptotics of Dirichlet series of a prescribed growth, PhD thesis, Ufa, 2009 (in Russian)

[12] A.M. Gaisin, N.N. Aitkuzhina, “Stability preserving perturbation of the maximal terms of Dirichlet series”, Probl. Anal. Issues Anal., 11(29):3 (2022), 30–44 | MR | Zbl

[13] A.M. Gaisin, “On a conjecture of Polya”, Russ. Acad. Sci. Izv. Math., 44:2 (1995), 281–299 | MR | Zbl

[14] A.M. Gaisin, “Properties of series of exponentials whose exponents satisfy to a condition of Levinson type”, Sb. Math., 197:6 (2006), 813–833 | DOI | DOI | MR | Zbl