Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We study an asymptotic behavior of the sum of an entire Dirichlet series $F(s)=\sum\limits_{n}a_{n}e^{\lambda_{n}s}$, $0\lambda_{n}\uparrow\infty$, on curves of a bounded $K$-slope naturally going to infinity. For entire transcendental functions of finite order having the form $f(z)=\sum\limits_{n}a_{n}z^{p_{n}}$, $p_{n}\in\mathbb{N}$, Pólya showed that if the density of the sequence $\left\{p_{n}\right\}$ is zero, then for each curve $\gamma$ going to infinity there exists an unbounded sequence $\{\xi_{n}\}\subset\gamma$ such that, as $\xi_{n}\rightarrow\infty$, the relation holds: \begin{equation*} \ln M_{f}(|\xi_{n}|)\sim \ln\left|f(\xi_{n})\right|; \end{equation*} here $M_{f}(r)$ is the maximum of the absolute value of the function $f$. Later these results were completely extended by I.D. Latypov to entire Dirichlet series of finite order and finite lower order according in the Ritt sense. A further generalization was obtained in works by N.N. Yusupova–Aitkuzhina to more general classes $D(\Phi)$ and $\underline{D}(\Phi)$ defined by the convex majorant $\Phi$. In this paper we obtain necessary and sufficient conditions for the exponents $\lambda_{n}$ ensuring that the logarithm of the absolute value of the sum of any Dirichlet series from the class $\underline{D}(\Phi)$ on the curve $\gamma$ of a bounded $K$-slope is equivalent to the logarithm of the maximum term as $\sigma=\mathrm{Re}\, s\rightarrow +\infty$ over some asymptotic set, the upper density of which is one. We note that for entire Dirichlet series of an arbitrarily fast growth the corresponding result for the case of $\gamma =\mathbb{R}_+$ was obtained by A.M. Gaisin in 1998.
Keywords:
Dirichlet series, curve of a bounded slope, asymptotic set.
Mots-clés : maximal term
Mots-clés : maximal term
@article{UFA_2023_15_3_a0,
author = {N. N. Aitkuzhina and A. M. Gaisin and R. A. Gaisin},
title = {Behavior of entire {Dirichlet} series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope},
journal = {Ufa mathematical journal},
pages = {3--12},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/}
}
TY - JOUR
AU - N. N. Aitkuzhina
AU - A. M. Gaisin
AU - R. A. Gaisin
TI - Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope
JO - Ufa mathematical journal
PY - 2023
SP - 3
EP - 12
VL - 15
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/
LA - en
ID - UFA_2023_15_3_a0
ER -
%0 Journal Article
%A N. N. Aitkuzhina
%A A. M. Gaisin
%A R. A. Gaisin
%T Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope
%J Ufa mathematical journal
%D 2023
%P 3-12
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/
%G en
%F UFA_2023_15_3_a0
N. N. Aitkuzhina; A. M. Gaisin; R. A. Gaisin. Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a0/