@article{UFA_2023_15_2_a9,
author = {A. Chouia and A. Azeb Ahmed and F. Yazid},
title = {Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage},
journal = {Ufa mathematical journal},
pages = {100--118},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/}
}
TY - JOUR AU - A. Chouia AU - A. Azeb Ahmed AU - F. Yazid TI - Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage JO - Ufa mathematical journal PY - 2023 SP - 100 EP - 118 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/ LA - en ID - UFA_2023_15_2_a9 ER -
A. Chouia; A. Azeb Ahmed; F. Yazid. Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 100-118. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/
[1] K.T. Andrews, S. Wright, M. Shillor, A. Klarbring, “A dynamic thermoviscoelastic contact problem with friction and wear”, Int. J. Eng. Sci., 35:14 (1997), 1291–1309 | DOI | MR | Zbl
[2] V. Barbu, Optimal control of variational inequalities, Pitman, Boston, 1984 | MR | Zbl
[3] K. Bartosz, “Hemivariational inequalities approach to the dynamic viscoelastic sliding contact problem with wear”, Nonl. Anal. Theory Methods Appl., 65:3 (2006), 546–566 | DOI | MR | Zbl
[4] S. Boutechebak, A. Azeb Ahmed, “Analysis of a dynamic contact problem for electro-viscoelastic materials”, Milan Journal of Math., 86:1 (2018), 105–124 | DOI | MR | Zbl
[5] A. Chudzikiewicz, A. Myśliński, “Thermoelastic wheel-rail contact problem with elastic graded-materials”, Wear, 271:1-2 (2011), 417–425 | DOI
[6] G. Duvaut, J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR
[7] M. Frémond, K.L. Kuttler, B. Nedjar, M. Shillor, “One-dimensional models of damage”, Adv. Math. Sci. Appl., 8 (1998), 541–570 | MR | Zbl
[8] M. Frémond, B. Nedjar, “Damage in concrete: the unilateral phenomenon”, Nucl. Eng. Design., 156:1-2 (1995), 323–335 | DOI | MR
[9] M. Frémond, KL. Kuttler, M. Shillor, “Existence and uniqueness of solutions for a one-dimensional damage model”, J. Math. Anal. Appl., 229:1 (1999), 271–294 | DOI | MR | Zbl
[10] M. Frémond, B. Nedjar, “Damage, gradient of damage and principle of virtual work”, Int J. Solids struct., 33:8 (1996), 1083–1103 | DOI | MR | Zbl
[11] I. Goryacheva, Contact mechanics in tribology, Kluwer, Dordrecht (, 1988 | MR
[12] R.J. Gu, K.L. Kuttle, M. Shillor, “Frictional wear of a thermoelastic beam”, J. Math. Anal. Appl., 242:2 (2000), 212–236 | DOI | MR | Zbl
[13] R.J. Gu, M. Shillor, “Thermal and wear analysis of an elastic beam in sliding contact”, Int. J. Solids Struct., 38:14 (2001), 2323–2333 | DOI | MR | Zbl
[14] W. Han, M. Shillor, M. Sofonea, “Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage”, J. Comp. Appl. Math., 137:2 (2001), 377–398 | DOI | MR | Zbl
[15] W. Han, M. Sofonea, “Evolutionary Variational inequalities arising in viscoelastic contact problems”, SIAM J. Numer. Anal., 38:2 (2000), 556–579 | DOI | MR | Zbl
[16] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[17] K.L. Kuttler, M. Shillor, “Dynamic contact with normal compliance wear and discontinuous friction coefficient”, SIAM J. Math. Anal., 34:1 (2002), 10–27 | DOI | MR
[18] M.S. Mesai Aoun, M. Selmani, A. Azeb Ahmed, “Variational analysis of a frictional contact problem with wear and damage”, Math. Model. Anal., 26:2 (2021), 170–187 | DOI | MR | Zbl
[19] J. Nečas, I. Hlavaček, Mathematical theory of elastic and elastoplastic bodies: an Introduction, Elsevier, Amsterdam, 1981 | MR
[20] D. Ouchenane, Z. Khalili, F. Yazid, M. Abdalla, B.B. Cherif, I. Mekawy, “A new result of stability for thermoelastic-bresse system of second sound related with forcing, delay, and past history terms”, J. Funct. Spaces, 2021 (2021), 9962569 | MR | Zbl
[21] D. Ouchenane, Z. Khalili, F. Yazid, “Global nonexistence of solution for coupled nonlinear Klein-Gordon with degenerate damping and source terms”, Stud. Univ. Babeş-Bolyai Math., 67:4 (2020), 801–815 | DOI | MR
[22] P.D. Panagiotopoulos, Inequality problems in mechanics and applications, Birkhäuser, Basel, 1985 | MR | Zbl
[23] M. Rochdi, M. Shillor, M. Sofonea, “Analysis of a quasistatic viscoelastic problem with friction and damage”, Adv. Math. Sci. Appl., 10:1 (2002), 173–89 | MR
[24] M. Rochdi, M. Shillor, M. Sofonea, “Quasistatic viscoelastic contact with normal compliance and friction”, J. Elast., 51:2 (1998), 105–126 | DOI | MR | Zbl
[25] A. Rodriguez-Arós, J.M. Viaño, M. Sofonea, “Asymptotic analysis of a quasistatic frictional contact problem with wear”, J. Math. Anal. Appl., 401:2 (2013), 641–653 | DOI | MR | Zbl
[26] J. Rojek, J.J. Telega, “Numerical simulation of bone-implant systems using a more realistic model of the contact interfaces with adhesion”, J. Theor. Appl. Mech., 37:3 (1999), 659–686 | Zbl
[27] J. Rojek, J.J. Telega, S. Stupkiewicz, “Contact problems with friction, adhesion and wear in orthopaedic biomechanics, II: numerical implementation and application to implanted knee joints”, J. Theor. Appl. Mech., 39:3 (2001), 679–706 | Zbl
[28] A. Saadallah, N. Chougui, F. Yazid, M. Abdalla, B.B. Cherif, I. Mekawy, “Asymptotic Behavior of Solutions to Free Boundary Problem with Tresca Boundary Conditions”, J. Funct. Spaces, 2021 (2021), 9983950 | MR | Zbl
[29] M. Shillor, M. Sofonea, J.J. Telega, Models and analysis of quasistatic contact, Springer, Berlin, 2004 | Zbl
[30] M. Shillor, M. Sofonea, “A quasistatic viscoelastic contact problem with friction”, Int. J. Eng. Sci., 38:14 (2000), 1517–1533 | DOI | MR | Zbl
[31] M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman, Hall/CRC Press, New York, 2006 | MR | Zbl
[32] M. Sofonea, F. Pãtrulescu, Y. Souleiman, “Analysis of a contact problem with wear and unilateral constraint”, Appl. Anal., 95:11 (2016), 2602–2619 | MR
[33] N. Strömberg, L. Johansson, A. Klarbring, “Derivation and analysis of a generalized standard model for contact, friction and wear”, Int. J. Solids Struct., 33:13 (1996), 1817–1836 | DOI | MR | Zbl
[34] N. Strömberg, Continuum thermodynamics of contact, friction and wear, Thesis No 491, Department of Mechanical Engineering, Linköping Institute of Technology, Linköping, 1995 | Zbl
[35] N. Strömberg, L. Johansson, A. Klarbring, “Derivation and analysis of a generalized standard model for contact friction and wear”, Int J. Solids Struct., 33:13 (1996), 1817–1836 | DOI | MR | Zbl
[36] K. Tahri, F. Yazid, “Biharmonic-Kirchhoff type equation involving critical Sobolev exponent with singular term”, Comm. Korean Math. Soc., 36:2 (2021), 247–256 | MR | Zbl
[37] F. Yazid, D. Ouchenane, Z. Khalili, “A stability result for Thermoelastic Timoshenko system of second sound with distributed delay term”, Math. Engin. Sci. Aerospace (MESA), 11:1 (2020), 163–175 | MR
[38] F. Yazid, D. Ouchenane, K. Zennir, “Global nonexistence of solutions to system of Klein-Gordon equations with degenerate damping and strong source terms in viscoelasticity”, Stud. Univ. Babeş-Bolyai Math., 67:3 (2022), 563–578 | DOI | MR
[39] F. Yazid, D. Ouchenane, “Exponential growth of solutions with Lp-norm of a Klein-Gordon wave equation with strong damping, source and delay terms”, Discontinuity, Nonlinearity, and Complexity, 2020 (to appear) | MR
[40] F. Yazid, N. Chougui, D. Ouchenane, F.S. Djeradi, “Global well-posedness and exponential stability results for Bresse-Timoshenko type system of second sound with distributed delay term”, Math. Meth. Appl. Sci. (to appear)
[41] A. Zmitrowicz, “Wear patterns and laws of wear-a review”, J. Theor. Appl. Mech., 44:2 (2006), 219–253
[42] A. Zmitrowicz, “Variational descriptions of wearing out solids and wear particles in contact mechanics”, J. Theor. Appl. Mech., 39:3 (2001), 791–808 | MR | Zbl