Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 100-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a quasistatic problem of a thermo-elaso-visco-plastic body in frictional contact with a moving foundation. The contact is modelled with the normal compliance condition and the associated law of dry friction. The model takes into account wear of the contact surface of the body caused by the friction and which is described by the Archard law. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. We list the assumptions on the data and derive a variational formulation of the mechanical problem. Existence and uniqueness of the weak solution for the problem is proved using the theory of evolutionary variational inequalities, parabolic variational inequalities, first order evolution equation and Banach fixed point.
Keywords: Thermo-elasto-viscoplastic material, damage, wear, frictional contact, existence and uniqueness, fixed point arguments, weak solution.
@article{UFA_2023_15_2_a9,
     author = {A. Chouia and A. Azeb Ahmed and F. Yazid},
     title = {Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage},
     journal = {Ufa mathematical journal},
     pages = {100--118},
     year = {2023},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/}
}
TY  - JOUR
AU  - A. Chouia
AU  - A. Azeb Ahmed
AU  - F. Yazid
TI  - Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage
JO  - Ufa mathematical journal
PY  - 2023
SP  - 100
EP  - 118
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/
LA  - en
ID  - UFA_2023_15_2_a9
ER  - 
%0 Journal Article
%A A. Chouia
%A A. Azeb Ahmed
%A F. Yazid
%T Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage
%J Ufa mathematical journal
%D 2023
%P 100-118
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/
%G en
%F UFA_2023_15_2_a9
A. Chouia; A. Azeb Ahmed; F. Yazid. Analysis of a thermo-elasto-viscoplastic contact problem with wear and damage. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 100-118. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a9/

[1] K.T. Andrews, S. Wright, M. Shillor, A. Klarbring, “A dynamic thermoviscoelastic contact problem with friction and wear”, Int. J. Eng. Sci., 35:14 (1997), 1291–1309 | DOI | MR | Zbl

[2] V. Barbu, Optimal control of variational inequalities, Pitman, Boston, 1984 | MR | Zbl

[3] K. Bartosz, “Hemivariational inequalities approach to the dynamic viscoelastic sliding contact problem with wear”, Nonl. Anal. Theory Methods Appl., 65:3 (2006), 546–566 | DOI | MR | Zbl

[4] S. Boutechebak, A. Azeb Ahmed, “Analysis of a dynamic contact problem for electro-viscoelastic materials”, Milan Journal of Math., 86:1 (2018), 105–124 | DOI | MR | Zbl

[5] A. Chudzikiewicz, A. Myśliński, “Thermoelastic wheel-rail contact problem with elastic graded-materials”, Wear, 271:1-2 (2011), 417–425 | DOI

[6] G. Duvaut, J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR

[7] M. Frémond, K.L. Kuttler, B. Nedjar, M. Shillor, “One-dimensional models of damage”, Adv. Math. Sci. Appl., 8 (1998), 541–570 | MR | Zbl

[8] M. Frémond, B. Nedjar, “Damage in concrete: the unilateral phenomenon”, Nucl. Eng. Design., 156:1-2 (1995), 323–335 | DOI | MR

[9] M. Frémond, KL. Kuttler, M. Shillor, “Existence and uniqueness of solutions for a one-dimensional damage model”, J. Math. Anal. Appl., 229:1 (1999), 271–294 | DOI | MR | Zbl

[10] M. Frémond, B. Nedjar, “Damage, gradient of damage and principle of virtual work”, Int J. Solids struct., 33:8 (1996), 1083–1103 | DOI | MR | Zbl

[11] I. Goryacheva, Contact mechanics in tribology, Kluwer, Dordrecht (, 1988 | MR

[12] R.J. Gu, K.L. Kuttle, M. Shillor, “Frictional wear of a thermoelastic beam”, J. Math. Anal. Appl., 242:2 (2000), 212–236 | DOI | MR | Zbl

[13] R.J. Gu, M. Shillor, “Thermal and wear analysis of an elastic beam in sliding contact”, Int. J. Solids Struct., 38:14 (2001), 2323–2333 | DOI | MR | Zbl

[14] W. Han, M. Shillor, M. Sofonea, “Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage”, J. Comp. Appl. Math., 137:2 (2001), 377–398 | DOI | MR | Zbl

[15] W. Han, M. Sofonea, “Evolutionary Variational inequalities arising in viscoelastic contact problems”, SIAM J. Numer. Anal., 38:2 (2000), 556–579 | DOI | MR | Zbl

[16] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[17] K.L. Kuttler, M. Shillor, “Dynamic contact with normal compliance wear and discontinuous friction coefficient”, SIAM J. Math. Anal., 34:1 (2002), 10–27 | DOI | MR

[18] M.S. Mesai Aoun, M. Selmani, A. Azeb Ahmed, “Variational analysis of a frictional contact problem with wear and damage”, Math. Model. Anal., 26:2 (2021), 170–187 | DOI | MR | Zbl

[19] J. Nečas, I. Hlavaček, Mathematical theory of elastic and elastoplastic bodies: an Introduction, Elsevier, Amsterdam, 1981 | MR

[20] D. Ouchenane, Z. Khalili, F. Yazid, M. Abdalla, B.B. Cherif, I. Mekawy, “A new result of stability for thermoelastic-bresse system of second sound related with forcing, delay, and past history terms”, J. Funct. Spaces, 2021 (2021), 9962569 | MR | Zbl

[21] D. Ouchenane, Z. Khalili, F. Yazid, “Global nonexistence of solution for coupled nonlinear Klein-Gordon with degenerate damping and source terms”, Stud. Univ. Babeş-Bolyai Math., 67:4 (2020), 801–815 | DOI | MR

[22] P.D. Panagiotopoulos, Inequality problems in mechanics and applications, Birkhäuser, Basel, 1985 | MR | Zbl

[23] M. Rochdi, M. Shillor, M. Sofonea, “Analysis of a quasistatic viscoelastic problem with friction and damage”, Adv. Math. Sci. Appl., 10:1 (2002), 173–89 | MR

[24] M. Rochdi, M. Shillor, M. Sofonea, “Quasistatic viscoelastic contact with normal compliance and friction”, J. Elast., 51:2 (1998), 105–126 | DOI | MR | Zbl

[25] A. Rodriguez-Arós, J.M. Viaño, M. Sofonea, “Asymptotic analysis of a quasistatic frictional contact problem with wear”, J. Math. Anal. Appl., 401:2 (2013), 641–653 | DOI | MR | Zbl

[26] J. Rojek, J.J. Telega, “Numerical simulation of bone-implant systems using a more realistic model of the contact interfaces with adhesion”, J. Theor. Appl. Mech., 37:3 (1999), 659–686 | Zbl

[27] J. Rojek, J.J. Telega, S. Stupkiewicz, “Contact problems with friction, adhesion and wear in orthopaedic biomechanics, II: numerical implementation and application to implanted knee joints”, J. Theor. Appl. Mech., 39:3 (2001), 679–706 | Zbl

[28] A. Saadallah, N. Chougui, F. Yazid, M. Abdalla, B.B. Cherif, I. Mekawy, “Asymptotic Behavior of Solutions to Free Boundary Problem with Tresca Boundary Conditions”, J. Funct. Spaces, 2021 (2021), 9983950 | MR | Zbl

[29] M. Shillor, M. Sofonea, J.J. Telega, Models and analysis of quasistatic contact, Springer, Berlin, 2004 | Zbl

[30] M. Shillor, M. Sofonea, “A quasistatic viscoelastic contact problem with friction”, Int. J. Eng. Sci., 38:14 (2000), 1517–1533 | DOI | MR | Zbl

[31] M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman, Hall/CRC Press, New York, 2006 | MR | Zbl

[32] M. Sofonea, F. Pãtrulescu, Y. Souleiman, “Analysis of a contact problem with wear and unilateral constraint”, Appl. Anal., 95:11 (2016), 2602–2619 | MR

[33] N. Strömberg, L. Johansson, A. Klarbring, “Derivation and analysis of a generalized standard model for contact, friction and wear”, Int. J. Solids Struct., 33:13 (1996), 1817–1836 | DOI | MR | Zbl

[34] N. Strömberg, Continuum thermodynamics of contact, friction and wear, Thesis No 491, Department of Mechanical Engineering, Linköping Institute of Technology, Linköping, 1995 | Zbl

[35] N. Strömberg, L. Johansson, A. Klarbring, “Derivation and analysis of a generalized standard model for contact friction and wear”, Int J. Solids Struct., 33:13 (1996), 1817–1836 | DOI | MR | Zbl

[36] K. Tahri, F. Yazid, “Biharmonic-Kirchhoff type equation involving critical Sobolev exponent with singular term”, Comm. Korean Math. Soc., 36:2 (2021), 247–256 | MR | Zbl

[37] F. Yazid, D. Ouchenane, Z. Khalili, “A stability result for Thermoelastic Timoshenko system of second sound with distributed delay term”, Math. Engin. Sci. Aerospace (MESA), 11:1 (2020), 163–175 | MR

[38] F. Yazid, D. Ouchenane, K. Zennir, “Global nonexistence of solutions to system of Klein-Gordon equations with degenerate damping and strong source terms in viscoelasticity”, Stud. Univ. Babeş-Bolyai Math., 67:3 (2022), 563–578 | DOI | MR

[39] F. Yazid, D. Ouchenane, “Exponential growth of solutions with Lp-norm of a Klein-Gordon wave equation with strong damping, source and delay terms”, Discontinuity, Nonlinearity, and Complexity, 2020 (to appear) | MR

[40] F. Yazid, N. Chougui, D. Ouchenane, F.S. Djeradi, “Global well-posedness and exponential stability results for Bresse-Timoshenko type system of second sound with distributed delay term”, Math. Meth. Appl. Sci. (to appear)

[41] A. Zmitrowicz, “Wear patterns and laws of wear-a review”, J. Theor. Appl. Mech., 44:2 (2006), 219–253

[42] A. Zmitrowicz, “Variational descriptions of wearing out solids and wear particles in contact mechanics”, J. Theor. Appl. Mech., 39:3 (2001), 791–808 | MR | Zbl