Mots-clés : bifurcation.
@article{UFA_2023_15_2_a8,
author = {M. G. Yumagulov and S. V. Akmanova},
title = {On stability of equilibria of nonlinear continuous-discrete dynamical systems},
journal = {Ufa mathematical journal},
pages = {85--99},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a8/}
}
M. G. Yumagulov; S. V. Akmanova. On stability of equilibria of nonlinear continuous-discrete dynamical systems. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 85-99. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a8/
[1] V.P. Maksimov, “Continuous-discrete dynamic models”, Ufa Math. J., 13:3 (2021), 95–103 | DOI | MR | Zbl
[2] V.P. Maksimov, A.L. Chadov, “Hybrid models in problems of economical dynamics”, Vestn. Perm. Univ., 2:9 (2011), 13–23 (in Russian)
[3] O.Ya. Shpilevaya, K.Yu. Kotov, “Switched systems: Stability and design”, Optoelectronics, Instrumentation and Data Processing, 44:5 (2008), 439–449 | DOI
[4] O.S. Logunova, E.B. Agapitov, I.I. Barankova, S.M. Andreev, G.N. Chusavitina, “Mathematical models for studying bodies heat states and control of heat processes”, Elektrotekhnicheskie sistemy i kompleksy, 2:43 (2019), 25–34 (in Russian)
[5] S.N. Vasiliev, A.I. Malikov, “On some results on stability of switching and hybrid systems”, Coll. Sci. Pap. “Actual problems in solid state mechanics. To 20th anniversary of IMM KazSC RAS”, v. 1, Foliant, Kazan, 2011, 23–81 (in Russian)
[6] M.S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Automat. Contr., 43:4 (1998), 475–482 | DOI | MR | Zbl
[7] R.A. Decarlo, M.S. Branicky, S. Pettersson, B. Lennartson, “Perspectives and results on the stability and Stabilizeability of hybrid systems”, Proceedings of the IEEE: Special issue on hybrid systems, 88:7 (2000), 1069–1082
[8] D. Liberzon, Switching in systems and control, Birkhauser, Boston, 2003 | MR | Zbl
[9] P.A. Lakrisenko, “On stability of equilibria of nonlinear hybrid mechanical systems”, Vestn. St.-Peterb. Univ. Ser. 10. Prikl. Matem. Inform. Prots. Uprav., 3 (2015), 116–125
[10] A.V. Platonov, “Stability analysis of nonstationary switched systems”, Russ. Math. (Iz. VUZ), 64:2 (2020), 56–65 | DOI | MR | Zbl
[11] A.Yu. Aleksandrov, A.V. Platonov, “On the asymptotic stability of solutions of hybrid multivariable systems”, Autom. Remote Control, 75:5 (2014), 818–828 | DOI | MR
[12] R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, “Stability Criteria for Switched and Hybrid Systems. SIAM Review”, SIAM, 49:4 (2007), 545–592 | DOI | MR | Zbl
[13] L. Hou, A. Michel, “Unifying theory for stability of continuous, discontinuous, and discrete-time dynamical systems”, Nonlinear Analysis: Hybrid Systems, 1:2 (2007), 154–172 | DOI | MR | Zbl
[14] I.L.D. Santos, G.N. Silva, “Some Results in Stability Analysis of Hybrid Dynamical Systems”, Tend. Mat. Apl. Comput., 8:3 (2007), 453–462 | DOI | MR | Zbl
[15] V.M. Marchenko, J.-J. Loiseau, “On the stability of hybrid difference-differential systems”, Diff. Equat., 45:5 (2009), 743–756 | DOI | MR | Zbl
[16] P.M. Simonov, “Stability and asymptotically periodic solutions of hybrid systems with aftereffect”, J. Math. Sci., 262:6 (2022), 855–862 | DOI | DOI | Zbl
[17] M.G. Yumagulov, L.S. Ibragimova, A.S. Belova, “Methods for studying the stability of linear periodic systems depending on a small parameter”, J. Math. Sci., 258:1 (2021), 115–127 | DOI | MR | Zbl
[18] M.G. Yumagulov, S.V. Akmanova, “Stability and bifurcations of continuous-discrete dynamical systems with a constant discretization step”, Vestnik BashGU, 26:4 (2021), 862–865 (in Russian)
[19] A.S. Bortakovskii, “Sufficient optimality conditions for controlling switched systems”, J. Comput. Syst. Sci. Int., 56:4 (2017), 636–651 | DOI | DOI | MR | Zbl
[20] M.A. Krasnosel'skii, The operator of translation along the trajectories of differential equations, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl
[21] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua, Methods of qualitative theory in nonlinear dynamics, v. II, World Scientific, Singapore, 2001 | MR | Zbl
[22] B.S. Bardin, A.P. Markeev, “The stability of the equilibrium of a pendulum for vertical oscillations of the point of suspension”, J. Appl. Math. Mech., 59:6 (1995), 879–886 | DOI | MR | Zbl
[23] A.A. Vyshinskiy, L.S. Ibragimova, S.A. Murtazina, M.G. Yumagulov, “An operator method for approximate investigation of a regular bifurcation in multiparameter dynamical systems”, Ufimskij Matem. Zhurn., 2:4 (2010), 3–26 (in Russian)
[24] N.I. Gusarova, S.A. Murtazina, M.F. Fazlytdinov, M.G. Yumagulov, “Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems”, Ufa Math. J., 10:1 (2018), 25–48 | DOI | MR | Zbl
[25] M. Roseau, Nonlinear oscillations and stability theory, Springer-Verlag, Berlin, 1966 (in French)
[26] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966 | MR | Zbl