Averaging of random affine transformations of functions domain
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 55-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the averaging of Feynman-Chernoff iterations of random operator-valued strongly continuous functions, the values of which are bounded linear operators on separable Hilbert space. In this work we consider averaging for a certain family of such random operator-valued functions. Linear operators, being the values of the considered functions, act in the Hilbert space of square integrable functions on a finite-dimensional Euclidean space and they are defined by random affine transformations of the functions domain. At the same time, the compositions of independent identically distributed random affine transformations are a non-commutative analogue of random walk. For an operator-valued function being an averaging of Feynman-Chernoff iterations, we prove an upper bound for its norm and we also establish that the closure of the derivative of this operator-valued function at zero is a generator a strongly continuous semigroup. In the work we obtain sufficient conditions for the convergence of the mathematical expectation of the sequence of Feynman-Chernoff iterations to the semigroup resolving the Cauchy problem for the corresponding Fokker-Planck equation.
Keywords: Feynman-Chernoff iterations, Chernoff theorem, operator-valued random process
Mots-clés : Fokker-Planck equation.
@article{UFA_2023_15_2_a5,
     author = {R. Sh. Kalmetev and Yu. N. Orlov and V. Zh. Sakbaev},
     title = {Averaging of random affine transformations of functions domain},
     journal = {Ufa mathematical journal},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/}
}
TY  - JOUR
AU  - R. Sh. Kalmetev
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
TI  - Averaging of random affine transformations of functions domain
JO  - Ufa mathematical journal
PY  - 2023
SP  - 55
EP  - 64
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/
LA  - en
ID  - UFA_2023_15_2_a5
ER  - 
%0 Journal Article
%A R. Sh. Kalmetev
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%T Averaging of random affine transformations of functions domain
%J Ufa mathematical journal
%D 2023
%P 55-64
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/
%G en
%F UFA_2023_15_2_a5
R. Sh. Kalmetev; Yu. N. Orlov; V. Zh. Sakbaev. Averaging of random affine transformations of functions domain. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/