Averaging of random affine transformations of functions domain
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 55-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the averaging of Feynman-Chernoff iterations of random operator-valued strongly continuous functions, the values of which are bounded linear operators on separable Hilbert space. In this work we consider averaging for a certain family of such random operator-valued functions. Linear operators, being the values of the considered functions, act in the Hilbert space of square integrable functions on a finite-dimensional Euclidean space and they are defined by random affine transformations of the functions domain. At the same time, the compositions of independent identically distributed random affine transformations are a non-commutative analogue of random walk. For an operator-valued function being an averaging of Feynman-Chernoff iterations, we prove an upper bound for its norm and we also establish that the closure of the derivative of this operator-valued function at zero is a generator a strongly continuous semigroup. In the work we obtain sufficient conditions for the convergence of the mathematical expectation of the sequence of Feynman-Chernoff iterations to the semigroup resolving the Cauchy problem for the corresponding Fokker-Planck equation.
Keywords: Feynman-Chernoff iterations, Chernoff theorem, operator-valued random process
Mots-clés : Fokker-Planck equation.
@article{UFA_2023_15_2_a5,
     author = {R. Sh. Kalmetev and Yu. N. Orlov and V. Zh. Sakbaev},
     title = {Averaging of random affine transformations of functions domain},
     journal = {Ufa mathematical journal},
     pages = {55--64},
     year = {2023},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/}
}
TY  - JOUR
AU  - R. Sh. Kalmetev
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
TI  - Averaging of random affine transformations of functions domain
JO  - Ufa mathematical journal
PY  - 2023
SP  - 55
EP  - 64
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/
LA  - en
ID  - UFA_2023_15_2_a5
ER  - 
%0 Journal Article
%A R. Sh. Kalmetev
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%T Averaging of random affine transformations of functions domain
%J Ufa mathematical journal
%D 2023
%P 55-64
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/
%G en
%F UFA_2023_15_2_a5
R. Sh. Kalmetev; Yu. N. Orlov; V. Zh. Sakbaev. Averaging of random affine transformations of functions domain. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/

[1] H. Furstenberg, “Non-commuting random products”, Trans. Amer. Math. Soc., 108:3 (1963), 377–428 | DOI | MR | Zbl

[2] V.N. Tutubalin, “On limit theorems for products of random matrices”, Theory Probab. Appl., 10:1 (1965), 15–27 | DOI | MR | MR | Zbl

[3] A.V. Skorokhod, “Operator stochastic differential equations and stochastic semigroups”, Russ. Math. Surv., 37:6 (1982), 177–204 | DOI | MR | Zbl | Zbl

[4] M.A. Berger, “Central limit theorem for products of random matrices”, Trans. AMS, 285:2 (1984), 777–803 | DOI | MR | Zbl

[5] M.L. Mehta, Random matrices, Elsevier, Amsterdam, 2004 | MR | Zbl

[6] N.Yu. Shubin, “Statistical methods in nuclear theory”, Fizika Elementarnych Chastic i Atomnogo Yadra, 5:4 (1974), 1023–1074 (in Russian) | MR

[7] A.S. Holevo, “Stochastic representations of quantum dynamical semi-groups”, Proc. Steklov Inst. Math., 191 (1992), 145–154 | MR | Zbl

[8] G. Teklemariam, E. Fortunato, C.C. Lopez, J. Emerson, J. Paz, T.F. Havel, D. Cory, “Method for modeling decoherence on a quantum-information processor”, Phys. Rev. A, 67:6 (2003), 062316 | DOI

[9] V.D. Lakhno, “Translation-invariant bipolarons and the problem of high temperature superconductivity”, Solid State Commun., 152:7 (2012), 621–623 | DOI

[10] O. Castejon, V. Kaloshin, Random Iteration of Maps on a Cylinder and diffusive behavior, 2015, arXiv: 1501.03319

[11] S.V. Kozyrev, “Model of vibrons in quantum photosynthesis as an analog of a model of laser”, Proc. Steklov Inst. Math., 306 (2019), 145–156 | DOI | DOI | MR | Zbl

[12] S. Bonaccorci, F. Cottini, D. Mugnolo, “Random evolution equation: well-posedness, asymptotics and application to graphs”, Appl. Math. Optim., 84 (2021), 2849–2887 | DOI | MR

[13] F. Girotti, M. Horssen, R. Carbone, M. Guta, “Large deviations, central limit, and dynamical phase transitions in the atom maser”, J. Math. Phys., 63 (2022), 062202 | DOI | MR | Zbl

[14] Yu.N. Orlov, V.Zh. Sakbaev, O.G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl

[15] Yu.N. Orlov, V.Zh. Sakbaev, O.G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl

[16] J.E. Gough, Yu.N. Orlov, V.Zh. Sakbaev, O.G. Smolyanov, “Random quantization of Hamiltonian systems”, Dokl. Math., 103:3 (2021), 122–126 | DOI | MR | Zbl

[17] R.Sh. Kalmetiev, Yu.N. Orlov, V.Zh. Sakbaev, “Chernoff iterations as an averaging method for random affine transformations”, Comput. Math. Math. Phys., 62:6 (2022), 996–1006 | DOI | MR | Zbl

[18] P. Chernoff, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl

[19] K.Yu. Zamana, V.Zh. Sakbaev, O.G. Smolyanov, “Stochastic processes on the group of orthogonal matrices and evolution equations describing them”, Comput. Math. Math. Phys., 60:10 (2020), 1686–1700 | DOI | DOI | MR | Zbl

[20] B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, 2015 | MR | Zbl

[21] K.Yu. Zamana, V.Zh. Sakbaev, “Compositions of independent random operators and related differential equations”, Preprints of the Keldysh Institute of Applied Mathematics, 2022, 049 (in Russian)

[22] K.Yu. Zamana, “Averaging of random orthogonal transformations of domain of functions”, Ufa Math. J., 13:4 (2021), 23–40 | DOI | MR | Zbl

[23] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966 | MR | MR | Zbl