Averaging of random affine transformations of functions domain
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 55-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the averaging of Feynman-Chernoff iterations of random operator-valued strongly continuous functions, the values of which are bounded linear operators on separable Hilbert space. In this work we consider averaging for a certain family of such random operator-valued functions. Linear operators, being the values of the considered functions, act in the Hilbert space of square integrable functions on a finite-dimensional Euclidean space and they are defined by random affine transformations of the functions domain. At the same time, the compositions of independent identically distributed random affine transformations are a non-commutative analogue of random walk. 
For an operator-valued function being an averaging of Feynman-Chernoff iterations, we prove an upper bound for its norm and we also establish that the closure of the derivative of this operator-valued function at zero is a generator a strongly continuous semigroup. In the work we obtain sufficient conditions for the convergence of the mathematical expectation of the sequence of Feynman-Chernoff iterations to the semigroup resolving the Cauchy problem for the corresponding Fokker-Planck equation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Feynman-Chernoff iterations, Chernoff theorem, operator-valued random process
Mots-clés : Fokker-Planck equation.
                    
                  
                
                
                Mots-clés : Fokker-Planck equation.
@article{UFA_2023_15_2_a5,
     author = {R. Sh. Kalmetev and Yu. N. Orlov and V. Zh. Sakbaev},
     title = {Averaging of random affine transformations of functions domain},
     journal = {Ufa mathematical journal},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/}
}
                      
                      
                    TY - JOUR AU - R. Sh. Kalmetev AU - Yu. N. Orlov AU - V. Zh. Sakbaev TI - Averaging of random affine transformations of functions domain JO - Ufa mathematical journal PY - 2023 SP - 55 EP - 64 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/ LA - en ID - UFA_2023_15_2_a5 ER -
R. Sh. Kalmetev; Yu. N. Orlov; V. Zh. Sakbaev. Averaging of random affine transformations of functions domain. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 55-64. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a5/
