@article{UFA_2023_15_2_a4,
author = {A. R. Danilin},
title = {Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives},
journal = {Ufa mathematical journal},
pages = {42--54},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a4/}
}
TY - JOUR AU - A. R. Danilin TI - Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives JO - Ufa mathematical journal PY - 2023 SP - 42 EP - 54 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a4/ LA - en ID - UFA_2023_15_2_a4 ER -
%0 Journal Article %A A. R. Danilin %T Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives %J Ufa mathematical journal %D 2023 %P 42-54 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a4/ %G en %F UFA_2023_15_2_a4
A. R. Danilin. Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 42-54. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a4/
[1] J.L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin, 1971 | MR | Zbl
[2] A.N. Tikhonov, A.A. Samarskii, Equations of mathematical physics, Pergamon Press, Oxford, 1963 | MR | MR | Zbl
[3] E.F. Lelikova, “On the asymptotics of a solution of a second order elliptic equation with small parameter at a higher derivative”, Proc. Steklov Inst. Math., 2003, Suppl. 1, S129–S143 | MR | Zbl
[4] A.M. Il'in, E.F. Lelikova, “On asymptotic approximations of solutions of an equation with a small parameter”, St. Petersburg Math. J., 22:6 (2011), 927–939 | DOI | MR | Zbl
[5] C. Eduardo, “A review on sparse solutions in optimal control of partial differential equations”, SeMA J., 74:3 (2017), 319–344 | DOI | MR | Zbl
[6] H. Lou, J. Yong, “Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls”, Math. Control Relat. Fields, 8:1 (2018), 57–88 | DOI | MR | Zbl
[7] M. Betz Livia, “Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations”, SIAM J. Control Optim., 57:6 (2019), 4033–4062 | DOI | MR | Zbl
[8] A.R. Danilin, “Approximation of a singularly perturbed elliptic problem of optimal control”, Sb. Math., 191:10 (2000), 1421–1431 | DOI | DOI | MR | Zbl
[9] A.R. Danilin, “Asymptotic behaviour of solutions of a singular elliptic system in a rectangle”, Sb. Math., 194:1 (2003), 31–61 | DOI | DOI | MR | Zbl
[10] A.R. Danilin, “Asymptotics of the solution of a singular optimal distributed control problem with essential constraints in a convex domain”, Diff. Equat., 56:2 (2020), 251–263 | DOI | DOI | MR | Zbl
[11] J.L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, v. I, Springer-Verlag, Berlin, 1972 | MR
[12] A.R. Danilin, A.P. Zorin, “Asymptotics of a solution to an optimal boundary control problem”, Proc. Steklov Inst. Math., 269, Suppl. 1 (2010), S81–S94 | DOI
[13] A.R. Danilin, “Optimal boundary control in a small concave domain”, Ufimskij Matem. Zhurn., 4:2 (2012), 87–100 (in Russian) | MR
[14] P. Hartman, Ordinary differential equations, John Wiley Sons, New York, 1964 | MR | Zbl
[15] A.R. Danilin, “Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary”, Proc. Steklov Inst. Math., 292, Suppl. 1 (2016), 55–66 | DOI | MR
[16] A.M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl