Mots-clés : non-quasianalytic Carleman class
@article{UFA_2023_15_2_a3,
author = {R. A. Gaisin},
title = {On rate of decreasing of extremal function in {Carleman} class},
journal = {Ufa mathematical journal},
pages = {31--41},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a3/}
}
R. A. Gaisin. On rate of decreasing of extremal function in Carleman class. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 31-41. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a3/
[1] N. Levinson, Gap and density theorems, Amer. Math. Soc., New-York, 1940 | MR | Zbl
[2] V.P. Gurarii, “On the Levinson theorem on normal families of analytic functions”, Zapis. Nauchn. Semin. POMI, 19, 1970, 215–220 (in Russian) | Zbl
[3] V. Matsaev, Theorems on uniqueness, completeness and compactness, related with the classical quasianalyticity, PhD thesis, Kharkov, 1964 (in Russian)
[4] E.M. Dyn'kin, “The growth of an analytic function near its set of singular points”, Zapis. Nauchn. Semin. POMI, 30, 1972, 158–160 (in Russian) | Zbl
[5] E.M. Dyn'kin, “Functions with given estimate for $\frac{\partial f} {\partial \overline{z}}$ and N. Levinson's theorem”, Math. USSR-Sb., 18:2 (1972), 181–189 | DOI | Zbl
[6] E.M. Dyn'kin, “The pseudoanalytic extension”, J. Anal. Math., 60:1 (1993), 45–70 | DOI | MR | Zbl
[7] A.M. Gaisin, I.G. Kinzyabulatov, “A Levinson-Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007 | DOI | DOI | MR | Zbl
[8] N. Sjoberg, “Sur les minorantes subharmoniques d'une function donee”, Comp. rendus IX Congres des Math. (Scandinaves, Helsingfors), 1939, 309–319 | Zbl
[9] T. Carleman, “Extension d'un theoreme de Liouville”, Acta Math., 48:3-4 (1926), 363–366 | DOI | MR
[10] F. Wolf, “On majorants of subharmonic and analytic functions”, Bull. Amer. Math. Soc., 48:12 (1942), 925–932 | DOI | MR | Zbl
[11] P. Koosis, The logarithmic integral, v. I, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl
[12] Y. Domar, “On the existence of a largest subharmonic minorant of a given function”, Ark. Mat., 3:5 (1958), 429–440 | DOI | MR | Zbl
[13] A.M. Gaisin, “Extremal problems in nonquasianalytic Carleman classes. Applications”, Sb. Math., 209:7 (2018), 958–984 | DOI | DOI | MR | Zbl
[14] V. Matsaev, M. Sodin, “Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions”, St.-Petersburg Math. J., 14:4 (2003), 615–640 | MR | Zbl
[15] N. Nikol'skii, Yngve Domar's forty years in harmonic analysis, Uppsala Univ, Uppsala, 1995, 45–78 | MR | Zbl
[16] T. Bang, “The theory of metric spaces applied to infinitely differentiable functions”, Math. Scand., 1 (1953), 137–152 | DOI | MR
[17] S. Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications, Gauthier-Villars, Paris, 1952 (in French) | MR