@article{UFA_2023_15_2_a11,
author = {H. Serrai and B. Tellab and Kh. Zennir},
title = {On two-order fractional boundary value problem with generalized {Riemann-Liouville} derivative},
journal = {Ufa mathematical journal},
pages = {135--156},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a11/}
}
TY - JOUR AU - H. Serrai AU - B. Tellab AU - Kh. Zennir TI - On two-order fractional boundary value problem with generalized Riemann-Liouville derivative JO - Ufa mathematical journal PY - 2023 SP - 135 EP - 156 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a11/ LA - en ID - UFA_2023_15_2_a11 ER -
H. Serrai; B. Tellab; Kh. Zennir. On two-order fractional boundary value problem with generalized Riemann-Liouville derivative. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 135-156. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a11/
[1] M. I. Abbas, M. A. Ragusa, “Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions”, Appl. Anal., 101:9 (2021), 3231–3245 | DOI | MR
[2] M. S. Abdo, K. Shah, H. A. Wahash, S. K. Panchal, “On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative”, Chaos Solitons Fractal, 135 (2020), 109867 | DOI | MR | Zbl
[3] B. Ahmad, S. K. Ntouyas, A. Alsaedi, “A study of nonlocal integro-multi-point boundary value problems of sequential fractional integro-differential inclusions”, Ukr. Math. J., 73:6 (2021), 888–907 | DOI | MR | Zbl
[4] B. Alqahtani, A. Fulga, E. Karapinar, “Fixed point results on $\delta$-symmetric quasi-metric space via simulation function with an application to Ulam stability”, Mathematics, 6:10 (2018), 208 | DOI | MR | Zbl
[5] J. Alzabut, G. M. Selvam, R.A. El-Nabulsi, D. Vignesh, M. E. Samei, “Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions”, Symmetry, 13:3 (2021), 473 | DOI
[6] D. Baleanu, A. Jajarmi, M. Hajipour, “A new formulation of the fractional optimal control problems involving Mittag-Leffler kernel”, J. Optim. Theory Appl., 175:3 (2017), 718–737 | DOI | MR | Zbl
[7] D. Baleanu, S. Etemad, S. Rezapour, “A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions”, Bound. Value Probl., 2020 (2020), 64 | DOI | MR | Zbl
[8] D. Baleanu, S. Etemad, S. Rezapour, “On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators”, Alex. Eng. J., 59:5 (2020), 3019–3027 | DOI | MR
[9] D. Baleanu, S. Rezapour, S. Etemad, A. Alsaedi, “On a time-fractional integro-differential equation via three-point boundary value conditions”, Math. Probl. Eng., 2015 (2015), 785738 | DOI | MR | Zbl
[10] D. Boucenna, A. Boulfoul, A. Chidouh, A. Ben Makhlouf, B. Tellab, “Some results for initial value problem of nonlinear fractional equation in Sobolev space”, J. Appl. Math. Comput., 67:1-2 (2021), 605–621 | DOI | MR | Zbl
[11] A. Boulfoul, B. Tellab, N. Abdellouahab, Kh. Zennir, “Existence and uniqueness results for initial value problem of nonlinear fractional integro-differential equation on an unbounded domain in a weighted Banach space”, Math. Methods Appl. Sci., 44:5 (2021), 3509–3520 | DOI | MR | Zbl
[12] M. A. Dokuyucu, E. Celik, H. Bulut, H. M. Baskonus, “Cancer treatment model with the Caputo-Fabrizio fractional derivative”, Eur. Phys. J. Plus., 133:3 (2018), 92 | DOI
[13] S. Etemad, S. Rezapour, M. E. Samei, “On a fractional Caputo-Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property”, Math. Methods Appl. Sci., 43:17 (2020), 9719–9734 | DOI | MR | Zbl
[14] S. Etemad, B. Tellab, C. T. Deressa, J. Alzabut, Y. Li, S. Rezapour, “On a generalized fractional boundary value problem based on the thermostat model and its numerical solutions via Bernstein polynomials”, Adv. Diff. Equ, 2021 (2021), 458 | DOI | MR | Zbl
[15] S. Etemad, B. Tellab, J. Alzabut, S. Rezapour, M. I. Abbas, “Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform”, Adv. Diff. Equ, 2021 (2021), 428 | DOI | MR | Zbl
[16] A. Granas, J. Dugundji, Fixed point theory, Springer, New York, 2003 | MR | Zbl
[17] M. Hajipour, A. Jajarmi, D. Baleanu, “An efficient nonstandard finite difference scheme for a class of fractional chaotic systems”, J. Comput. Nonl. Dyn., 13:2 (2017), 021013 | DOI | MR
[18] D. H. Hyers, “On the stability of the linear functional equation”, Proc. Natl. Acad. Sci. USA, 27:4 (1941), 222–224 | DOI | MR | Zbl
[19] A. Jajarmi, M. Hajipour, D. Baleanu, “New aspects of the adaptive synchronization and hyperchaos suppression of a financial model”, Chaos Solitons Fractals, 99 (2017), 285–296 | DOI | MR | Zbl
[20] F. Jarad, T. Abdeljawad, “Generalized fractional derivatives and Laplace transform”, Discrete Contin, Dyn. Syst. Ser. S, 13:3 (2020), 709–722 | MR | Zbl
[21] S. A. Khan, K. Shah, G. Zaman, F. Jarad, “Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative”, Chaos Interdiscip. J. Nonl. Sci., 29:1 (2019), 013128 | DOI | MR | Zbl
[22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, Elsevier, Amsterdam, 2006 | MR
[23] N. Kosmatov, W. Jiang, “Resonant functional problems of fractional order”, Chaos Solitons Fractals, 91 (2016), 573–579 | DOI | MR | Zbl
[24] C. Lu, C. Fu, H. Yang, “Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions”, Appl. Math. Comput., 327 (2018), 104–116 | MR | Zbl
[25] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, “A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control”, Chaos Solitons Fractals, 144 (2021), 110668 | DOI | MR
[26] S. Rezapour, B. Tellab, C.T. Deressa, S. Etemad, K. Nonlaopon, “H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of navier bvps via the generalized differential transform method”, Fractal and Fractional, 5:4 (2021), 166 | DOI | MR
[27] S. Rezapour, S. Etemad, B. Tellab, P. Agarwal, J. L. G. Guirao, “Numerical solutions caused by $DGJIM$ and $ADM$ methods for multi-term fractional bvp involving the generalized $\psi$-RL-operators”, Symmetry, 16:4 (2021), 532 | DOI
[28] I.A. Rus, “Ulam stabilities of ordinary differential equations in a Banach space”, Carpath. J. Math., 26:1 (2010), 103–107 | MR | Zbl
[29] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[30] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, “A fractional epidemiological model for computer viruses pertaining to a new fractional derivative”, Appl. Math. Comput., 316:1 (2018), 504–515 | MR | Zbl
[31] S. Sitho, S. Etemad, B. Tellab, S. Rezapour, S. K. Ntouyas, J. Tariboon, “Approximate solutions of an extended multi-order boundary value problem by implementing two numerical algorithms”, Symmetry, 13:8 (2021), 1341 | DOI
[32] W. Sudsutad, J. Alzabut, S. Nontasawatsri, C. Thaiprayoon, “Stability analysis for a generalized proportional fractional Langevin equation with variable coefficient and mixed integro-differential boundary conditions”, J. Nonl. Funct. Anal., 2020 (2020), 23
[33] S. T. M. Thabet, S. Etemad, S. Rezapour, “On a new structure of the pantograph inclusion problem in the Caputo conformable setting”, Bound. Value Probl., 2020 (2020), 171 | DOI | MR | Zbl
[34] S. T. M. Thabet, S. Etemad, S. Rezapour, “On a coupled Caputo conformable system of Pantograph problems”, Turk. J. Math., 45:1 (2021), 496–519 | DOI | MR | Zbl
[35] S. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964 | MR | Zbl
[36] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999 | MR | Zbl