Mots-clés : Volterra equation
@article{UFA_2023_15_2_a10,
author = {D. K. Durdiev and J. J. Jumaev and D. D. Atoev},
title = {Inverse problem on determining two kernels in integro-differential equation of heat flow},
journal = {Ufa mathematical journal},
pages = {119--134},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/}
}
TY - JOUR AU - D. K. Durdiev AU - J. J. Jumaev AU - D. D. Atoev TI - Inverse problem on determining two kernels in integro-differential equation of heat flow JO - Ufa mathematical journal PY - 2023 SP - 119 EP - 134 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/ LA - en ID - UFA_2023_15_2_a10 ER -
D. K. Durdiev; J. J. Jumaev; D. D. Atoev. Inverse problem on determining two kernels in integro-differential equation of heat flow. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 119-134. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/
[1] M.E. Gurtin, A.C. Pipkin, “A general theory of heat conduction with finite wave speeds”, Arch. Rational Mech. Anal., 31:2 (1968), 113–126 | DOI | MR | Zbl
[2] R.K. Miller, “An integro-differential equation for rigid heat conductors with memory”, J. Math. Anal. Appl., 66:2 (1978), 313–332 | DOI | MR | Zbl
[3] M.E. Gurtin, “On the thermodynamics of materials with memory”, Arch. Rational Mech. Anal., 28:1 (1968), 40–50 | DOI | MR | Zbl
[4] B.D. Coleman, M.E. Gurtin, “Equipresense and constitutive equation for rigid heat conductors”, Z. Angew. Math. Phys., 18:2 (1967), 199–208 | DOI | MR
[5] H. Grabmueller, Linear Theorie der Waermeleitung in Medium mit Gedaechtnis; Existenz und Eindeutigkeit von Loesungen sum Inversen Problem, Preprint No 226, Technische Hochschule Darmstdadt, 1975
[6] G.V. Dyatlov, “Determination for the memory kernel from boundary measurements on a finite time interval”, J. Inverse Ill-Posed Probl., 11:1 (2003), 59–66 | DOI | MR | Zbl
[7] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill-Posed Probl., 28:1 (2020), 43–52 | DOI | MR | Zbl
[8] D.K. Durdiev, Zh.Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | MR | Zbl
[9] D.K. Durdiev, Zh.D. Totieva, “Problem of determining one-dimensional kernel of viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 | MR | Zbl
[10] Zh.D. Totieva, “The problem of determining the piezoelectric module of electro visco-elasticity equation”, Math. Meth. Appl. Sci., 41:17 (2018), 6409–6321 | DOI | MR
[11] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Semin. Math. Univ. Padova, 87 (1992), 105–138 | MR | Zbl
[12] A. Lorenzi, V. Priymenko, “A duality approach for solving identification problems related to integro-differential Maxwell's equations”, Rend. Semin. Math. Univ. Padova, 94 (1994), 31–51 | MR
[13] A. Lorenzi, F. Messina, V.G. Romanov, “Recovering a Lame kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | DOI | MR | Zbl
[14] D.K. Durdiev, A.A. Rakhmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: global solvability”, Theor. Math. Phys., 195:3 (2018), 923–937 | DOI | MR | Zbl
[15] V.G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, J. Appl. Ind. Math., 6:4 (2012), 360–370 | DOI | MR | Zbl
[16] V.G. Romanov, A. Lorenzi, “Stability estimates for an inverse problem related to viscoelasticmedia”, J. Inverse Ill-Posed Probl., 14:1 (2006), 57–82 | DOI | MR | Zbl
[17] V.G. Romanov, A. Lorenzi, “Identification of an electromagnetic coefficient connected with deformation currents”, Inverse Probl., 9:2 (1993), 301–319 | DOI | MR | Zbl
[18] V.G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | DOI | MR | Zbl
[19] A.L. Bukhgein, G.V. Dyatlov, “Uhlmann, Unique continuation for hyperbolic equations with memory”, J. Inverse Ill-Posed Probl., 15:6 (2007), 587–598 | DOI | MR
[20] D.K. Durdiev, A.A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium”, J. Appl. Ind. Math., 14:2 (2020), 281–295 | DOI | MR | Zbl
[21] V.G. Romanov, “Inverse problems for equation with a memory”, Eurasian J Math. Comput. Appl., 2:4 (2014), 51–80
[22] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonl. Anal. Theory, Meth. Appl., 22:1 (1994), 21–44 | DOI | MR | Zbl
[23] D.K.Durdiev, “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Diff. Equat., 44:2 (2008), 893–899 | DOI | MR | Zbl
[24] D.K. Durdiev, A.A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[25] D.K. Durdiev, Zh.D. Totieva, “Problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 | MR | Zbl
[26] U.D.Durdiev, Z.D.Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl
[27] J. Janno, L.V. Wolfersdorf, “Inverse problems for identification of memory kernels in heat flow”, J. Inverse Ill-Posed Probl., 4:1 (1996), 39–66 | DOI | MR | Zbl
[28] J. Janno, A. Lorenzi, “Recovering memory kernels in parabolic transmission problems”, J. Inverse Ill-Posed Probl., 16:3 (2008), 239–265 | DOI | MR | Zbl
[29] F. Colombo, “A inverse problem for a parabolic integro-differential model in the theory of combustion”, Physica D, 236:2 (2007), 81–89 | DOI | MR | Zbl
[30] D. Serikbaev, “Inverse problem for fractional order pseudo-parabolic equation with involution”, Ufa Math. J., 12:4 (2020), 119–135 | DOI | MR | Zbl
[31] A. Gladkov, M. Guedda, “Influence of variable coeffcients on global existence of solutions of semilinear heat equations with nonlinear boundary conditions”, Elect. J. Qualitative Theory Diff. Equat., 2020 (2020), 63 | MR | Zbl
[32] D.K. Durdiev, Zh.Zh. Zhumaev, “One-dimensional inverse problems of finding the kernel of the integro-differential heat equation in a bounded domain”, Ukrains'kyi Matematychnyi Zhurnal, 73:11 (2021), 1492–1506 | DOI | MR
[33] D.K. Durdiev, A.Sh. Rashidov, “Inverse problem of determining the kernel in an integro-differential equation of parabolic type”, Diff. Equat., 50:1 (2014), 110–116 | DOI | MR | Zbl
[34] D.K. Durdiev, Zh.Zh. Zhumaev, “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Meth. Funct. Anal. Topology, 25:3 (2019), 219–226 | MR
[35] D.K. Durdiev, Zh.Zh. Zhumaev, “Problem of Determining the Thermal Memory of a Conducting Medium”, Diff. Equat., 56:6 (2020), 785–796 | DOI | MR | Zbl
[36] D. Durdiev, E. Shishkina, S. Sitnik, “The Explicit Formula for Solution of Anomalous Diffusion Equation in the Multi-Dimensional Space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273 | DOI | MR | Zbl
[37] A.A. Kilbas, Integral equations: course of lectures, Belorus State Univ., Minsk, 2005 (in Russian)
[38] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970 | MR | Zbl
[39] A.N. Tikhonov, A.A. Samarsky, Equations of mathematical physics, Pergamon Press, Oxford, 1963 | MR | MR | Zbl