Inverse problem on determining two kernels in integro-differential equation of heat flow
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 119-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the inverse problem on determining the energy-temperature relation $\chi(t)$ and the heat conduction relation $k(t)$ functions in the one-dimensional integro-differential heat equation. The direct problem is an initial-boundary value problem for this equation with the Dirichlet boundary conditions. The integral terms involve the time convolution of unknown kernels and a direct problem solution. As an additional information for solving inverse problem, the solution of the direct problem for $x=x_0$ and $x=x_1$ is given. We first introduce an auxiliary problem equivalent to the original one. Then the auxiliary problem is reduced to an equivalent closed system of Volterra-type integral equations with respect to the unknown functions. Applying the method of contraction mappings to this system in the continuous class of functions, we prove the main result of the article, which a local existence and uniqueness theorem for the inverse problem.
Keywords: Banach principle, resolvent, operator equation, initial-boundary problem, inverse problem, Green function.
Mots-clés : Volterra equation
@article{UFA_2023_15_2_a10,
     author = {D. K. Durdiev and J. J. Jumaev and D. D. Atoev},
     title = {Inverse problem on determining two kernels in integro-differential equation of heat flow},
     journal = {Ufa mathematical journal},
     pages = {119--134},
     year = {2023},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - J. J. Jumaev
AU  - D. D. Atoev
TI  - Inverse problem on determining two kernels in integro-differential equation of heat flow
JO  - Ufa mathematical journal
PY  - 2023
SP  - 119
EP  - 134
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/
LA  - en
ID  - UFA_2023_15_2_a10
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A J. J. Jumaev
%A D. D. Atoev
%T Inverse problem on determining two kernels in integro-differential equation of heat flow
%J Ufa mathematical journal
%D 2023
%P 119-134
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/
%G en
%F UFA_2023_15_2_a10
D. K. Durdiev; J. J. Jumaev; D. D. Atoev. Inverse problem on determining two kernels in integro-differential equation of heat flow. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 119-134. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/

[1] M.E. Gurtin, A.C. Pipkin, “A general theory of heat conduction with finite wave speeds”, Arch. Rational Mech. Anal., 31:2 (1968), 113–126 | DOI | MR | Zbl

[2] R.K. Miller, “An integro-differential equation for rigid heat conductors with memory”, J. Math. Anal. Appl., 66:2 (1978), 313–332 | DOI | MR | Zbl

[3] M.E. Gurtin, “On the thermodynamics of materials with memory”, Arch. Rational Mech. Anal., 28:1 (1968), 40–50 | DOI | MR | Zbl

[4] B.D. Coleman, M.E. Gurtin, “Equipresense and constitutive equation for rigid heat conductors”, Z. Angew. Math. Phys., 18:2 (1967), 199–208 | DOI | MR

[5] H. Grabmueller, Linear Theorie der Waermeleitung in Medium mit Gedaechtnis; Existenz und Eindeutigkeit von Loesungen sum Inversen Problem, Preprint No 226, Technische Hochschule Darmstdadt, 1975

[6] G.V. Dyatlov, “Determination for the memory kernel from boundary measurements on a finite time interval”, J. Inverse Ill-Posed Probl., 11:1 (2003), 59–66 | DOI | MR | Zbl

[7] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill-Posed Probl., 28:1 (2020), 43–52 | DOI | MR | Zbl

[8] D.K. Durdiev, Zh.Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | MR | Zbl

[9] D.K. Durdiev, Zh.D. Totieva, “Problem of determining one-dimensional kernel of viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 | MR | Zbl

[10] Zh.D. Totieva, “The problem of determining the piezoelectric module of electro visco-elasticity equation”, Math. Meth. Appl. Sci., 41:17 (2018), 6409–6321 | DOI | MR

[11] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Semin. Math. Univ. Padova, 87 (1992), 105–138 | MR | Zbl

[12] A. Lorenzi, V. Priymenko, “A duality approach for solving identification problems related to integro-differential Maxwell's equations”, Rend. Semin. Math. Univ. Padova, 94 (1994), 31–51 | MR

[13] A. Lorenzi, F. Messina, V.G. Romanov, “Recovering a Lame kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | DOI | MR | Zbl

[14] D.K. Durdiev, A.A. Rakhmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: global solvability”, Theor. Math. Phys., 195:3 (2018), 923–937 | DOI | MR | Zbl

[15] V.G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, J. Appl. Ind. Math., 6:4 (2012), 360–370 | DOI | MR | Zbl

[16] V.G. Romanov, A. Lorenzi, “Stability estimates for an inverse problem related to viscoelasticmedia”, J. Inverse Ill-Posed Probl., 14:1 (2006), 57–82 | DOI | MR | Zbl

[17] V.G. Romanov, A. Lorenzi, “Identification of an electromagnetic coefficient connected with deformation currents”, Inverse Probl., 9:2 (1993), 301–319 | DOI | MR | Zbl

[18] V.G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | DOI | MR | Zbl

[19] A.L. Bukhgein, G.V. Dyatlov, “Uhlmann, Unique continuation for hyperbolic equations with memory”, J. Inverse Ill-Posed Probl., 15:6 (2007), 587–598 | DOI | MR

[20] D.K. Durdiev, A.A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium”, J. Appl. Ind. Math., 14:2 (2020), 281–295 | DOI | MR | Zbl

[21] V.G. Romanov, “Inverse problems for equation with a memory”, Eurasian J Math. Comput. Appl., 2:4 (2014), 51–80

[22] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonl. Anal. Theory, Meth. Appl., 22:1 (1994), 21–44 | DOI | MR | Zbl

[23] D.K.Durdiev, “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Diff. Equat., 44:2 (2008), 893–899 | DOI | MR | Zbl

[24] D.K. Durdiev, A.A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR | Zbl

[25] D.K. Durdiev, Zh.D. Totieva, “Problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 | MR | Zbl

[26] U.D.Durdiev, Z.D.Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl

[27] J. Janno, L.V. Wolfersdorf, “Inverse problems for identification of memory kernels in heat flow”, J. Inverse Ill-Posed Probl., 4:1 (1996), 39–66 | DOI | MR | Zbl

[28] J. Janno, A. Lorenzi, “Recovering memory kernels in parabolic transmission problems”, J. Inverse Ill-Posed Probl., 16:3 (2008), 239–265 | DOI | MR | Zbl

[29] F. Colombo, “A inverse problem for a parabolic integro-differential model in the theory of combustion”, Physica D, 236:2 (2007), 81–89 | DOI | MR | Zbl

[30] D. Serikbaev, “Inverse problem for fractional order pseudo-parabolic equation with involution”, Ufa Math. J., 12:4 (2020), 119–135 | DOI | MR | Zbl

[31] A. Gladkov, M. Guedda, “Influence of variable coeffcients on global existence of solutions of semilinear heat equations with nonlinear boundary conditions”, Elect. J. Qualitative Theory Diff. Equat., 2020 (2020), 63 | MR | Zbl

[32] D.K. Durdiev, Zh.Zh. Zhumaev, “One-dimensional inverse problems of finding the kernel of the integro-differential heat equation in a bounded domain”, Ukrains'kyi Matematychnyi Zhurnal, 73:11 (2021), 1492–1506 | DOI | MR

[33] D.K. Durdiev, A.Sh. Rashidov, “Inverse problem of determining the kernel in an integro-differential equation of parabolic type”, Diff. Equat., 50:1 (2014), 110–116 | DOI | MR | Zbl

[34] D.K. Durdiev, Zh.Zh. Zhumaev, “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Meth. Funct. Anal. Topology, 25:3 (2019), 219–226 | MR

[35] D.K. Durdiev, Zh.Zh. Zhumaev, “Problem of Determining the Thermal Memory of a Conducting Medium”, Diff. Equat., 56:6 (2020), 785–796 | DOI | MR | Zbl

[36] D. Durdiev, E. Shishkina, S. Sitnik, “The Explicit Formula for Solution of Anomalous Diffusion Equation in the Multi-Dimensional Space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273 | DOI | MR | Zbl

[37] A.A. Kilbas, Integral equations: course of lectures, Belorus State Univ., Minsk, 2005 (in Russian)

[38] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970 | MR | Zbl

[39] A.N. Tikhonov, A.A. Samarsky, Equations of mathematical physics, Pergamon Press, Oxford, 1963 | MR | MR | Zbl