Inverse problem on determining two kernels in integro-differential equation of heat flow
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 119-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the inverse problem on determining the energy-temperature relation $\chi(t)$ and the heat conduction relation $k(t)$ functions in the one-dimensional integro-differential heat equation. The direct problem is an initial-boundary value problem for this equation with the Dirichlet boundary conditions. The integral terms involve the time convolution of unknown kernels and a direct problem solution. As an additional information for solving inverse problem, the solution of the direct problem for $x=x_0$ and $x=x_1$ is given. We first introduce an auxiliary problem equivalent to the original one. Then the auxiliary problem is reduced to an equivalent closed system of Volterra-type integral equations with respect to the unknown functions. Applying the method of contraction mappings to this system in the continuous class of functions, we prove the main result of the article, which a local existence and uniqueness theorem for the inverse problem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Banach principle, resolvent, operator equation, initial-boundary problem, inverse problem, Green function.
Mots-clés : Volterra equation
                    
                  
                
                
                Mots-clés : Volterra equation
@article{UFA_2023_15_2_a10,
     author = {D. K. Durdiev and J. J. Jumaev and D. D. Atoev},
     title = {Inverse problem on determining two kernels in integro-differential equation of heat flow},
     journal = {Ufa mathematical journal},
     pages = {119--134},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/}
}
                      
                      
                    TY - JOUR AU - D. K. Durdiev AU - J. J. Jumaev AU - D. D. Atoev TI - Inverse problem on determining two kernels in integro-differential equation of heat flow JO - Ufa mathematical journal PY - 2023 SP - 119 EP - 134 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/ LA - en ID - UFA_2023_15_2_a10 ER -
%0 Journal Article %A D. K. Durdiev %A J. J. Jumaev %A D. D. Atoev %T Inverse problem on determining two kernels in integro-differential equation of heat flow %J Ufa mathematical journal %D 2023 %P 119-134 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/ %G en %F UFA_2023_15_2_a10
D. K. Durdiev; J. J. Jumaev; D. D. Atoev. Inverse problem on determining two kernels in integro-differential equation of heat flow. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 119-134. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a10/
