Conditions for absence of solutions to some higher order elliptic inequalities with singular coefficients in $\mathbb{R}^n$
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study Liouville type theorems for elliptic higher order inequalities with singular coefficients and gradient terms in $\mathbb{R}^n$. Our approach is based on the Pokhozhaev nonlinear capacity method, which is widely used for studying various nonlinear elliptic inequalities. We obtain apriori estimates for solutions of an elliptic inequality using the method of test functions. An optimal choice of the test function leads us to a nonlinear minimax problem, which generates a nonlinear capacity induced by a corresponding nonlinear problem. The existence of the zero limit of the corresponding apriori estimate ensures the absence of a nontrivial solution to the problem. Our result provide a new view on the behavior of solutions of higher order elliptic inequalities with singular coefficients and gradient terms and this approach can be useful in studying nonlinear elliptic inequalities of other types.
Keywords: Liouville type theorems, apriori estimate, nonlinear capacity, gradient terms.
Mots-clés : singular coefficients
@article{UFA_2023_15_2_a0,
     author = {W. E. Admasu and E. I. Galakhov},
     title = {Conditions for absence of solutions to some higher order elliptic inequalities with singular coefficients in $\mathbb{R}^n$},
     journal = {Ufa mathematical journal},
     pages = {3--8},
     year = {2023},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a0/}
}
TY  - JOUR
AU  - W. E. Admasu
AU  - E. I. Galakhov
TI  - Conditions for absence of solutions to some higher order elliptic inequalities with singular coefficients in $\mathbb{R}^n$
JO  - Ufa mathematical journal
PY  - 2023
SP  - 3
EP  - 8
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a0/
LA  - en
ID  - UFA_2023_15_2_a0
ER  - 
%0 Journal Article
%A W. E. Admasu
%A E. I. Galakhov
%T Conditions for absence of solutions to some higher order elliptic inequalities with singular coefficients in $\mathbb{R}^n$
%J Ufa mathematical journal
%D 2023
%P 3-8
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a0/
%G en
%F UFA_2023_15_2_a0
W. E. Admasu; E. I. Galakhov. Conditions for absence of solutions to some higher order elliptic inequalities with singular coefficients in $\mathbb{R}^n$. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a0/

[1] M. F. Bidaut-Véron, S. Pohozaev, “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84:1 (2001), 1–49 | DOI | MR | Zbl

[2] R. Filippucci, “Nonexistence of positive weak solutions of elliptic inequalities”, Nonl. Anal., 70:8 (2009), 2903–2916 | DOI | MR | Zbl

[3] R. Filippucci, “Nonexistence of nonnegative solutions of elliptic systems of divergence type”, J. Diff. Equat., 250:1 (2011), 572–595 | DOI | MR | Zbl

[4] R. Filippucci, P. Pucci, M. Rigoli, “Non-existence of entire solutions of degenerate elliptic inequalities with weights”, Arch. Ration. Mech. Anal., 188:1 (2008), 155–179 | DOI | MR | Zbl

[5] R. Filippucci, P. Pucci, M. Rigoli, “On weak solutions of nonlinear weighted p-Laplacian elliptic inequalities”, Nonl. Anal., 70:8 (2009), 3008–3019 | DOI | MR | Zbl

[6] R. Filippucci, P. Pucci, M. Rigoli, “On entire solutions of degenerate elliptic differential inequalities with nonlinear gradient terms”, J. Math. Anal. Appl., 356:2 (2009), 689–697 | DOI | MR | Zbl

[7] R. Filippucci, P. Pucci, M. Rigoli, “Nonlinear weighted p-Laplacian elliptic inequalities with gradient terms”, Comm. Contemp. Math., 12:3 (2010), 501–535 | DOI | MR | Zbl

[8] E. Galakhov, “Some nonexistence results for quasilinear elliptic problems”, J. Math. Anal. Appl., 252:1 (2000), 256–277 | DOI | MR | Zbl

[9] E. Galakhov, “Some nonexistence results for quasilinear PDEs”, Commun. Pure Appl. Anal., 6:1 (2007), 141–161 | DOI | MR | Zbl

[10] E. Galakhov, O. Salieva, “On blow-up of solutions to differential inequalities with singularities on unbounded sets”, J. Math. Anal. Appl., 408:1 (2013), 102–113 | DOI | MR | Zbl

[11] E.I. Galakhov, O.A. Salieva, “Blow-up of solutions of some nonlinear inequalities with singularities on unbounded sets”, Math. Notes., 98:2 (2015), 222–229 | DOI | DOI | MR | Zbl

[12] E. Galakhov, O. Salieva, “Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets”, Dynamical Systems, Differential Equations and Applications, AIMS Proceedings, 2015, 2015, 489–494 | MR | Zbl

[13] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl

[14] X. Li, F. Li, “A priori estimates for nonlinear differential inequalities and applications”, J. Math. Anal. Appl., 378:2 (2011), 723–733 | DOI | MR | Zbl

[15] X. Li, F. Li, “Nonexistence of solutions for nonlinear differential inequalities with gradient nonlinearities”, Comm. Pure Appl. Anal., 11:3 (2012), 935–943 | DOI | MR | Zbl

[16] X. Li, F. Li, “Nonexistence of solutions for singular quasilinear differential inequalities with a gradient nonlinearity”, Nonl. Anal., 75:5 (2012), 2812–2822 | DOI | MR | Zbl

[17] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR

[18] E. Mitidieri, S. I. Pokhozhaev, “The absence of global positive solutions of quasilinear elliptic inequalities”, Dokl. Math., 57:2 (1998), 250–253 | MR | Zbl

[19] E. Mitidieri, S.I. Pokhozhaev, “Nonexistence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb{R ^n}$”, Dokl. Math., 59:3 (1999), 351–355 | MR | Zbl

[20] E. Mitidieri, S.I. Pokhozhaev, “Nonexistence of positive solutions for quasilinear elliptic problems on $\mathbb{R ^n}$”, Proc. Steklov Inst. Math., 227 (1999), 186–216 | MR | Zbl

[21] E. Mitidieri, S.I. Pohozaev, “Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R ^n}$”, J. Evol. Equat., 1:2 (2001), 189–220 | DOI | MR | Zbl

[22] E. Mitidieri, S.I. Pohozaev, “Towards a unified approach to nonexistence of solutions for a class of differential inequalities”, Milan J. Math., 72:1 (2004), 129–162 | DOI | MR | Zbl

[23] S.I. Pokhozhaev, “A general approach to the theory of nonexistence of global solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 236 (2002), 273–284 | MR | Zbl

[24] S.I. Pohozaev, A. Tesei, “Nonexistence of local solutions to semilinear partial differential inequalities”, Ann. de l'I.H.P. Analyse non-linéaire, 21:4 (2004), 487–502 | MR | Zbl

[25] X. Li, H. Wan, X. Li, “Nonexistence of solutions for nonlinear differential inequalities with singularities on unbounded sets”, Math. Notes, 107:1 (2020), 121–128 | MR | Zbl