Mots-clés : Heisenberg ferromagnet equation
@article{UFA_2023_15_1_a5,
author = {Zh. Myrzakulova and G. Nugmanova and N. Serikbayev and K. Yesmakhanova and R. Myrzakulov},
title = {Integrable {Tolkynay} equations and related {Yajima-Oikawa} type equations},
journal = {Ufa mathematical journal},
pages = {122--20},
year = {2023},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/}
}
TY - JOUR AU - Zh. Myrzakulova AU - G. Nugmanova AU - N. Serikbayev AU - K. Yesmakhanova AU - R. Myrzakulov TI - Integrable Tolkynay equations and related Yajima-Oikawa type equations JO - Ufa mathematical journal PY - 2023 SP - 122 EP - 20 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/ LA - en ID - UFA_2023_15_1_a5 ER -
%0 Journal Article %A Zh. Myrzakulova %A G. Nugmanova %A N. Serikbayev %A K. Yesmakhanova %A R. Myrzakulov %T Integrable Tolkynay equations and related Yajima-Oikawa type equations %J Ufa mathematical journal %D 2023 %P 122-20 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/ %G en %F UFA_2023_15_1_a5
Zh. Myrzakulova; G. Nugmanova; N. Serikbayev; K. Yesmakhanova; R. Myrzakulov. Integrable Tolkynay equations and related Yajima-Oikawa type equations. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 122-20. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/
[1] N. Yajima and M. Oikawa, “Formation and interaction of sonic-Langmuir solitons: Inverse scattering method”, Prog. Theor. Phys., 56:6 (1976), 1719–1739 | DOI | MR | Zbl
[2] A. C. Newell, “Long waves-short waves; a solvable model”, SIAM J. Appl. Math., 35:4 (1978), 650-664 | DOI | MR | Zbl
[3] Y. C. Ma, “The complete solution of the long-wave short-wave resonance equations”, Stud. Appl. Math., 59:3 (1978), 201-221 | DOI | MR | Zbl
[4] X. Geng, R. Li, “On a vector modified Yajima-Oikawa long-wave–short-wave equation”, Mathematics., 7:10 (2019), 958 | DOI
[5] B. Huard, V. Novikov, “On Classification of integrable Davey-Stewartson type equations”, J. Phys. A: Math. Theor., 46:27 (2013), 275202 | DOI | MR | Zbl
[6] A. Maccari, “The Kadomtsev-Petviashvili equation as a source of integrable model equations”, J. Math. Phys., 37:12 (1996), 6207 | DOI | MR | Zbl
[7] A. Maccari, “A new integrable Davey-Stewartson-type equation”, J. Math. Phys., 40:8 (1999), 3971 | DOI | MR | Zbl
[8] M. Caso-Huerta, A. Degasperis, S. Lombardo, M. Sommacal, “A new integrable model of long wave-short wave interaction and linear stability spectra”, Proc. R. Soc. A, 477:2252 (2021), 20210408 | DOI | MR
[9] M. Faquir, M. A. Manna, A. Neveu, “An integrable equation governing short waves in a long-wave model”, Proc. R. Soc. A, 463:3 (2007), 1939-1954 | DOI | MR | Zbl
[10] D. Blackmore, Y. Prykarpatsky, J. Golenia, A. Prykarpatsky, “Hidden symmetries of Lax integrable nonlinear systems”, App. Math., 4:10 (2013), 95-116 | DOI
[11] L. Ling and Q. P. Liu, “A long waves-short waves model: Darboux transformation and soliton solutions”, J. Math. Phys., 52:5 (2011), 053513 | DOI | MR | Zbl
[12] R. Li and X. Geng, “On a vector long wave-short wave-type model”, Stud. Appl. Math., 144:2 (2020), 164-184 | DOI | MR | Zbl
[13] R. Li and X. Geng, “A matrix Yajima Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions”, Commun. Nonl. Sci. Numer. Simul., 90:7 (2020), 105408 | MR | Zbl
[14] Y. Ishimori, “Multi-vortex solutions of a two-dimensional nonlinear wave equation”, Prog. Theor. Phys., 72:1 (1984), 33-37 | DOI | MR | Zbl
[15] Chen Chi, Zhou Zi-Xiang, “Darboux transformation and exact solutions of the Myrzakulov-I equation”, Chin. Phys. Lett., 26:8 (2009), 080504 | DOI
[16] Chen Hai, Zhou Zi-Xiang, “Darboux transformation with a double spectral parameter for the Myrzakulov-I equation”, Chin. Phys. Lett., 31:12 (2014), 120504 | DOI
[17] Hai Chen, Zi-Xiang Zhou, “Global explicit solutions with n double spectral parameters for the Myrzakulov-I equation”, Mod. Phys. Lett. B., 30:29 (2016), 1650358 | DOI | MR
[18] Hai-Rong Wang, Rui Guo, “Soliton, breather and rogue wave solutions for the Myrzakulov-Lakshmanan-IV equation”, Optik., 242:21 (2021), 166353
[19] R. Myrzakulov, A. Danlybaeva and G. Nugmanova, “Geometry and multidimensional soliton equations”, Theor. Math. Phys., 118:13 (1999), 441–451 | MR | Zbl
[20] R. Myrzakulov, G. Mamyrbekova, G. Nugmanova, M. Lakshmanan, “Integrable (2+1)-dimensional spin models with self-consistent potentials”, Symmetry, 7:3 (2015), 1352 | DOI | MR | Zbl
[21] Z. S. Yersultanova, M. Zhassybayeva, K. Yesmakhanova, G. Nugmanova, R. Myrzakulov, “Darboux transformation and exact solutions of the integrable Heisenberg ferromagnetic equation with self-consistent potentials”, Int. J. Geom. Meth. Mod. Phys., 13:1 (2016), 1550134 | DOI | MR | Zbl
[22] R. Myrzakulov, G. N. Nugmanova, R. N. Syzdykova, “Gauge equivalence between (2+1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations”, J. Phys. A: Math. Gen., 31:47 (1998), 9535–9545 | DOI | MR | Zbl
[23] R. Myrzakulov, S. Vijayalakshmi, R. Syzdykova, M. Lakshmanan, “On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrödinger equations”, J. Math. Phys., 39:4 (1998), 2122-2139 | DOI | MR
[24] V.G. Makhankov, R. Myrzakulov, $\sigma$-model representation of the yajima-oikawa equation system, Preprint P5-84-719, JINR, Dubna, 1984 | MR
[25] R. Myrzakulov, S. Vijayalakshmi, G.N. Nugmanova, M. Lakshmanan, “A (2+1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures”, Phys. Lett. A, 233:4-6 (1997), 391-396 | DOI | MR | Zbl
[26] R. Myrzakulov, M. Lakshmanan, S. Vijayalakshmi, A. Danlybaeva, “Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions”, J. Math. Phys., 39:1 (1998), 3765-3771 | MR | Zbl
[27] R. Myrzakulov, G. Nugmanova, R. Syzdykova, “Gauge equivalence between (2+1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations”, J. Phys. A: Math. Theor., 31:147 (1998), 9535-9545 | MR | Zbl
[28] R. Myrzakulov, M. Daniel, R. Amuda, “Nonlinear spin-phonon excitations in an inhomogeneous compressible biquadratic Heisenberg spin chain”, Phys. A, 234:13 (1997), 715-724 | DOI
[29] S.C. Anco, R. Myrzakulov, “Integrable generalizations of Schrödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces”, J. Geom. Phys., 60:10 (2010), 1576-1603 | DOI | MR | Zbl
[30] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, K. Yesmakhanova, M. Lakshmanan, “Integrable motion of curves in self-consistent potentials: relation to spin systems and soliton equations”, Phys. Lett. A., 378:30, 2118-2123 (2014) | MR | Zbl
[31] Nevin Ertug Gürbüz, R. Myrzakulov, Z. Myrzakulova, “Three anholonomy densities for three formulations with anholonomic coordinates with hybrid frame in $R^{3}_{1}$”, Optik, 261:5 (2022), 169161 | DOI
[32] L. Martina, Kur. Myrzakul, R. Myrzakulov, G. Soliani, “Deformation of surfaces, integrable systems, and Chern–Simons theory”, J. Math. Phys., 42:13 (2001), 1397-1417 | DOI | MR | Zbl
[33] K. Yesmakhanova, G. Nugmanova, G. Shaikhova, G. Bekova, R. Myrzakulov, “Coupled dispersionless and generalized Heisenberg ferromagnet equations with self-consistent sources: Geometry and equivalence”, Int. J. Geom. Meth. Mod. Phys., 17:7 (2020), 2050104 | DOI | MR
[34] A. Myrzakul, G. Nugmanova, N. Serikbayev, R. Myrzakulov, “Surfaces and curves induced by nonlinear Schrödinger-type equations and their spin systems”, Symmetry, 13:10 (2021), 1827 | DOI
[35] A. Myrzakul and R. Myrzakulov, “Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrödinger equation”, Int. J. Geom. Meth. Mod. Phys., 14:10 (2017), 1750136 | DOI | MR | Zbl
[36] A. Myrzakul and R. Myrzakulov, “Integrable motion of two interacting curves, spin systems and the Manakov system”, Int. J. Geom. Meth. Mod. Phys., 14:7 (2017), 1750115 | DOI | MR | Zbl
[37] Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov and N. Serikbayev, “Integrable Kuralay equations: geometry, solutions and generalizations”, Symmetry, 14:7 (2022), 1374 | DOI
[38] Z. Sagidullayeva, K. Yesmakhanova, G. Nugmanova, R. Myrzakulov, “Soliton solutions of the Kuralay equation via Hirota bilinear method”, Book of Abst. of 6th The 6th International Virtual Workshop on Nonlinear and Modern Mathematical Physics (Florida A University, Tallahassee, USA), 2022, 11–12
[39] M. Lakshmanan, “On the geometrical interpretation of solitons”, Phys. Lett. A, 64:4 (1978), 354–356 | DOI | MR
[40] V.E. Zakharov, L.A. Takhtajan, “Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet”, Theor. Math. Phys., 38:1 (1979), 17–23 | DOI | MR