Integrable Tolkynay equations and related Yajima-Oikawa type equations
Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 122-20
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider some nonlinear models describing resonance interactions of long waves and short-waves (shortly, the LS waves models). Such LS models were derived and proposed due to various motivations, which mainly come from the different branches of modern physics, especially, from the fluid and plasma physics. In this paper, we study some of integrable LS models, namely, the Yajima-Oikawa equation, the Newell equation, the Ma equation, the Geng-Li equation and their different modifications and extensions. In particular, the gauge equivalent counterparts of these integrable LS models (equations), namely, different integrable spin systems are constructed. In fact, these gauge equivalent counterparts of these LS equations are integrable generalized Heisenberg ferromagnet type models (equations) (HFE) with self-consistent potentials (HFESCP). The associated Lax representations of these HFESCP are presented. Using these Lax representations of these HFESCP, they can be studied by the inverse scattering method. For instance, the equivalence established using the Lax representation also makes it possible to find a connection between the solutions of the corresponding integrable equations.
Keywords: Integrable equations, Yajima-Oikawa equation, gauge equivalent, Lax representation.
Mots-clés : Heisenberg ferromagnet equation
@article{UFA_2023_15_1_a5,
     author = {Zh. Myrzakulova and G. Nugmanova and N. Serikbayev and K. Yesmakhanova and R. Myrzakulov},
     title = {Integrable {Tolkynay} equations and related {Yajima-Oikawa} type equations},
     journal = {Ufa mathematical journal},
     pages = {122--20},
     year = {2023},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/}
}
TY  - JOUR
AU  - Zh. Myrzakulova
AU  - G. Nugmanova
AU  - N. Serikbayev
AU  - K. Yesmakhanova
AU  - R. Myrzakulov
TI  - Integrable Tolkynay equations and related Yajima-Oikawa type equations
JO  - Ufa mathematical journal
PY  - 2023
SP  - 122
EP  - 20
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/
LA  - en
ID  - UFA_2023_15_1_a5
ER  - 
%0 Journal Article
%A Zh. Myrzakulova
%A G. Nugmanova
%A N. Serikbayev
%A K. Yesmakhanova
%A R. Myrzakulov
%T Integrable Tolkynay equations and related Yajima-Oikawa type equations
%J Ufa mathematical journal
%D 2023
%P 122-20
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/
%G en
%F UFA_2023_15_1_a5
Zh. Myrzakulova; G. Nugmanova; N. Serikbayev; K. Yesmakhanova; R. Myrzakulov. Integrable Tolkynay equations and related Yajima-Oikawa type equations. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 122-20. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/

[1] N. Yajima and M. Oikawa, “Formation and interaction of sonic-Langmuir solitons: Inverse scattering method”, Prog. Theor. Phys., 56:6 (1976), 1719–1739 | DOI | MR | Zbl

[2] A. C. Newell, “Long waves-short waves; a solvable model”, SIAM J. Appl. Math., 35:4 (1978), 650-664 | DOI | MR | Zbl

[3] Y. C. Ma, “The complete solution of the long-wave short-wave resonance equations”, Stud. Appl. Math., 59:3 (1978), 201-221 | DOI | MR | Zbl

[4] X. Geng, R. Li, “On a vector modified Yajima-Oikawa long-wave–short-wave equation”, Mathematics., 7:10 (2019), 958 | DOI

[5] B. Huard, V. Novikov, “On Classification of integrable Davey-Stewartson type equations”, J. Phys. A: Math. Theor., 46:27 (2013), 275202 | DOI | MR | Zbl

[6] A. Maccari, “The Kadomtsev-Petviashvili equation as a source of integrable model equations”, J. Math. Phys., 37:12 (1996), 6207 | DOI | MR | Zbl

[7] A. Maccari, “A new integrable Davey-Stewartson-type equation”, J. Math. Phys., 40:8 (1999), 3971 | DOI | MR | Zbl

[8] M. Caso-Huerta, A. Degasperis, S. Lombardo, M. Sommacal, “A new integrable model of long wave-short wave interaction and linear stability spectra”, Proc. R. Soc. A, 477:2252 (2021), 20210408 | DOI | MR

[9] M. Faquir, M. A. Manna, A. Neveu, “An integrable equation governing short waves in a long-wave model”, Proc. R. Soc. A, 463:3 (2007), 1939-1954 | DOI | MR | Zbl

[10] D. Blackmore, Y. Prykarpatsky, J. Golenia, A. Prykarpatsky, “Hidden symmetries of Lax integrable nonlinear systems”, App. Math., 4:10 (2013), 95-116 | DOI

[11] L. Ling and Q. P. Liu, “A long waves-short waves model: Darboux transformation and soliton solutions”, J. Math. Phys., 52:5 (2011), 053513 | DOI | MR | Zbl

[12] R. Li and X. Geng, “On a vector long wave-short wave-type model”, Stud. Appl. Math., 144:2 (2020), 164-184 | DOI | MR | Zbl

[13] R. Li and X. Geng, “A matrix Yajima Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions”, Commun. Nonl. Sci. Numer. Simul., 90:7 (2020), 105408 | MR | Zbl

[14] Y. Ishimori, “Multi-vortex solutions of a two-dimensional nonlinear wave equation”, Prog. Theor. Phys., 72:1 (1984), 33-37 | DOI | MR | Zbl

[15] Chen Chi, Zhou Zi-Xiang, “Darboux transformation and exact solutions of the Myrzakulov-I equation”, Chin. Phys. Lett., 26:8 (2009), 080504 | DOI

[16] Chen Hai, Zhou Zi-Xiang, “Darboux transformation with a double spectral parameter for the Myrzakulov-I equation”, Chin. Phys. Lett., 31:12 (2014), 120504 | DOI

[17] Hai Chen, Zi-Xiang Zhou, “Global explicit solutions with n double spectral parameters for the Myrzakulov-I equation”, Mod. Phys. Lett. B., 30:29 (2016), 1650358 | DOI | MR

[18] Hai-Rong Wang, Rui Guo, “Soliton, breather and rogue wave solutions for the Myrzakulov-Lakshmanan-IV equation”, Optik., 242:21 (2021), 166353

[19] R. Myrzakulov, A. Danlybaeva and G. Nugmanova, “Geometry and multidimensional soliton equations”, Theor. Math. Phys., 118:13 (1999), 441–451 | MR | Zbl

[20] R. Myrzakulov, G. Mamyrbekova, G. Nugmanova, M. Lakshmanan, “Integrable (2+1)-dimensional spin models with self-consistent potentials”, Symmetry, 7:3 (2015), 1352 | DOI | MR | Zbl

[21] Z. S. Yersultanova, M. Zhassybayeva, K. Yesmakhanova, G. Nugmanova, R. Myrzakulov, “Darboux transformation and exact solutions of the integrable Heisenberg ferromagnetic equation with self-consistent potentials”, Int. J. Geom. Meth. Mod. Phys., 13:1 (2016), 1550134 | DOI | MR | Zbl

[22] R. Myrzakulov, G. N. Nugmanova, R. N. Syzdykova, “Gauge equivalence between (2+1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations”, J. Phys. A: Math. Gen., 31:47 (1998), 9535–9545 | DOI | MR | Zbl

[23] R. Myrzakulov, S. Vijayalakshmi, R. Syzdykova, M. Lakshmanan, “On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrödinger equations”, J. Math. Phys., 39:4 (1998), 2122-2139 | DOI | MR

[24] V.G. Makhankov, R. Myrzakulov, $\sigma$-model representation of the yajima-oikawa equation system, Preprint P5-84-719, JINR, Dubna, 1984 | MR

[25] R. Myrzakulov, S. Vijayalakshmi, G.N. Nugmanova, M. Lakshmanan, “A (2+1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures”, Phys. Lett. A, 233:4-6 (1997), 391-396 | DOI | MR | Zbl

[26] R. Myrzakulov, M. Lakshmanan, S. Vijayalakshmi, A. Danlybaeva, “Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions”, J. Math. Phys., 39:1 (1998), 3765-3771 | MR | Zbl

[27] R. Myrzakulov, G. Nugmanova, R. Syzdykova, “Gauge equivalence between (2+1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations”, J. Phys. A: Math. Theor., 31:147 (1998), 9535-9545 | MR | Zbl

[28] R. Myrzakulov, M. Daniel, R. Amuda, “Nonlinear spin-phonon excitations in an inhomogeneous compressible biquadratic Heisenberg spin chain”, Phys. A, 234:13 (1997), 715-724 | DOI

[29] S.C. Anco, R. Myrzakulov, “Integrable generalizations of Schrödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces”, J. Geom. Phys., 60:10 (2010), 1576-1603 | DOI | MR | Zbl

[30] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, K. Yesmakhanova, M. Lakshmanan, “Integrable motion of curves in self-consistent potentials: relation to spin systems and soliton equations”, Phys. Lett. A., 378:30, 2118-2123 (2014) | MR | Zbl

[31] Nevin Ertug Gürbüz, R. Myrzakulov, Z. Myrzakulova, “Three anholonomy densities for three formulations with anholonomic coordinates with hybrid frame in $R^{3}_{1}$”, Optik, 261:5 (2022), 169161 | DOI

[32] L. Martina, Kur. Myrzakul, R. Myrzakulov, G. Soliani, “Deformation of surfaces, integrable systems, and Chern–Simons theory”, J. Math. Phys., 42:13 (2001), 1397-1417 | DOI | MR | Zbl

[33] K. Yesmakhanova, G. Nugmanova, G. Shaikhova, G. Bekova, R. Myrzakulov, “Coupled dispersionless and generalized Heisenberg ferromagnet equations with self-consistent sources: Geometry and equivalence”, Int. J. Geom. Meth. Mod. Phys., 17:7 (2020), 2050104 | DOI | MR

[34] A. Myrzakul, G. Nugmanova, N. Serikbayev, R. Myrzakulov, “Surfaces and curves induced by nonlinear Schrödinger-type equations and their spin systems”, Symmetry, 13:10 (2021), 1827 | DOI

[35] A. Myrzakul and R. Myrzakulov, “Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrödinger equation”, Int. J. Geom. Meth. Mod. Phys., 14:10 (2017), 1750136 | DOI | MR | Zbl

[36] A. Myrzakul and R. Myrzakulov, “Integrable motion of two interacting curves, spin systems and the Manakov system”, Int. J. Geom. Meth. Mod. Phys., 14:7 (2017), 1750115 | DOI | MR | Zbl

[37] Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov and N. Serikbayev, “Integrable Kuralay equations: geometry, solutions and generalizations”, Symmetry, 14:7 (2022), 1374 | DOI

[38] Z. Sagidullayeva, K. Yesmakhanova, G. Nugmanova, R. Myrzakulov, “Soliton solutions of the Kuralay equation via Hirota bilinear method”, Book of Abst. of 6th The 6th International Virtual Workshop on Nonlinear and Modern Mathematical Physics (Florida A University, Tallahassee, USA), 2022, 11–12

[39] M. Lakshmanan, “On the geometrical interpretation of solitons”, Phys. Lett. A, 64:4 (1978), 354–356 | DOI | MR

[40] V.E. Zakharov, L.A. Takhtajan, “Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet”, Theor. Math. Phys., 38:1 (1979), 17–23 | DOI | MR