Integrable Tolkynay  equations  and related Yajima-Oikawa type equations
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 122-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider some nonlinear models describing resonance interactions of  long waves and short-waves (shortly, the LS waves models). Such LS models were derived and proposed due to various motivations, which mainly come from the different branches of modern physics, especially, from the fluid and plasma physics. In this paper, we study some of integrable LS  models, namely, the Yajima-Oikawa equation, the Newell equation, the Ma equation, the Geng-Li equation and their different modifications and extensions.  In particular, the gauge equivalent counterparts of these integrable LS models (equations), namely, different integrable spin systems are constructed. In fact, these gauge equivalent counterparts  of these  LS equations are integrable generalized Heisenberg ferromagnet type models (equations) (HFE) with self-consistent potentials (HFESCP). The associated Lax representations of these HFESCP are presented.  Using these Lax representations of these HFESCP, they can be studied by the inverse scattering method. For instance, the equivalence established using the Lax representation also makes it possible to find a connection between the solutions of the corresponding integrable equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Integrable equations, Yajima-Oikawa equation, gauge equivalent, Lax representation.
Mots-clés : Heisenberg ferromagnet equation
                    
                  
                
                
                Mots-clés : Heisenberg ferromagnet equation
@article{UFA_2023_15_1_a5,
     author = {Zh. Myrzakulova and G. Nugmanova and N. Serikbayev and K. Yesmakhanova and R. Myrzakulov},
     title = {Integrable {Tolkynay}  equations  and related {Yajima-Oikawa} type equations},
     journal = {Ufa mathematical journal},
     pages = {122--20},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/}
}
                      
                      
                    TY - JOUR AU - Zh. Myrzakulova AU - G. Nugmanova AU - N. Serikbayev AU - K. Yesmakhanova AU - R. Myrzakulov TI - Integrable Tolkynay equations and related Yajima-Oikawa type equations JO - Ufa mathematical journal PY - 2023 SP - 122 EP - 20 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/ LA - en ID - UFA_2023_15_1_a5 ER -
%0 Journal Article %A Zh. Myrzakulova %A G. Nugmanova %A N. Serikbayev %A K. Yesmakhanova %A R. Myrzakulov %T Integrable Tolkynay equations and related Yajima-Oikawa type equations %J Ufa mathematical journal %D 2023 %P 122-20 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/ %G en %F UFA_2023_15_1_a5
Zh. Myrzakulova; G. Nugmanova; N. Serikbayev; K. Yesmakhanova; R. Myrzakulov. Integrable Tolkynay equations and related Yajima-Oikawa type equations. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 122-20. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a5/
