@article{UFA_2023_15_1_a4,
author = {J. Merker},
title = {Inexistence of non-product {Hessian} rank 1 affinely homogeneous hypersurfaces $H^n \subset \mathbb{R}^{n+1}$},
journal = {Ufa mathematical journal},
pages = {56--121},
year = {2023},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a4/}
}
J. Merker. Inexistence of non-product Hessian rank 1 affinely homogeneous hypersurfaces $H^n \subset \mathbb{R}^{n+1}$. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 56-121. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a4/
[1] S. Lie, J. Merker, Theory of transformation groups I. General properties of continuous transformation groups. A contemporary approach and translation, Springer-Verlag, Berlin–Heidelberg, 2015 | MR | Zbl
[2] B. Abdalla, F. Dillen, L. Vrancken, “Affine homogeneous surfaces in $\mathbb{R}^3$ with vanishing Pick invariant”, Abh. Math. Sem. Univ. Hamburg., 67:1 (1997), 105–115 | DOI | MR | Zbl
[3] B. Doubrov, B. Komrakov, M. Rabinovich, “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds, World Sci. Publ., River Edge, New Jersey, 1996, 168–178 | MR | Zbl
[4] M. Eastwood, V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77:1 (1999), 11–69 | DOI | MR | Zbl
[5] Ö. Arnaldsson, F. Valiquette, “Invariants of surfaces in three-dimensional affine geometry”, SIGMA, 17 (2021), 033 | MR | Zbl
[6] Z. Chen, J. Merker, Affine homogeneous surfaces with Hessian rank 2 and algebras of differential invariants, 2010, arXiv: 2010.02873
[7] B. Doubrov, B. Komrakov, “Classification of homogeneous submanifolds in homogeneous spaces”, Lobachevskii J. Math., 3 (1999), 19–38 | MR | Zbl
[8] M. Wermann, Homogene Hyperflächen im vierdimensionalen äqui-affinen Raum, Diss., Dortmund Univ., 2001 | Zbl
[9] M. Eastwood, V. Ezhov, “Homogeneous hypersurfaces with isotropy in affine four-space”, Proc. Steklov Inst. Math., 235 (2001), 49–63 | MR | Zbl
[10] M. Eastwood, V. Ezhov, “A classification of non-degenerate homogeneous equiaffine hypersurfaces in four complex dimensions”, Asian J. Math., 5:4 (2001), 721–739 | DOI | MR | Zbl
[11] Z. Chen, J. Merker, “On differential invariants of parabolic surfaces”, Dissertationes Mathematicæ, 559 (2021), 1–88 | DOI | MR | Zbl
[12] W.G. Foo, J. Merker, T.A. Ta, “On convergent Poincaré-Moser reduction for Levi degenerate embedded $5$-dimensional CR manifolds”, New York J. Math., 28 (2022), 250–336 | MR | Zbl
[13] W.G. Foo, J. Merker, P. Nurowski, T.A. Ta, Homogeneous $\mathfrak{C}_{2,1}$ models, 2021, arXiv: 2104.09608
[14] J. Merker, Affine rigidity without integration, 2021, arXiv: 1903.00889
[15] J. Merker, Classification of Hessian rank 1 affinely homogeneous hypersurfaces $H^n \subset \mathbb{R}^{n+1}$ in dimensions $n = 2, 3, 4$, 2022, arXiv: 2206.01449