Singular Hahn--Hamiltonian systems
Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 127-140

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study a Hahn–Hamiltonian system in the singular case. For this system, the Titchmarsh–Weyl theory is established. In this context, the first part provides a summary of the relevant literature and some necessary fundamental concepts of the Hahn calculus. To pass from the Hahn difference expression to operators, we define the Hilbert space $L_{\omega,q,W} ^{2}((\omega_{0},\infty);\mathbb{C}^{2n})$ in the second part of the work. The corresponding maximal operator $L_{\max}$ are introduced. For the Hahn–Hamiltonian system, we proved Green formula. Then we introduce a regular self-adjoint Hahn–Hamiltonian system. In the third part of the work, we study Titchmarsh-Weyl functions $M(\lambda)$ and circles $\mathcal{C}(a,\lambda)$ for this system. These circles proved to be embedded one to another. The number of square-integrable solutions of the Hahn–Hamilton system is studied. In the fourth part of the work, we obtain boundary conditions in the singular case. Finally, we define a self-adjoint operator in the fifth part of the work.
Keywords: Hahn–Hamiltonian system, singular point, Titchmarsh–Weyl theory.
@article{UFA_2022_14_4_a9,
     author = {B. P. Allahverdiev and H. Tuna},
     title = {Singular {Hahn--Hamiltonian} systems},
     journal = {Ufa mathematical journal},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
TI  - Singular Hahn--Hamiltonian systems
JO  - Ufa mathematical journal
PY  - 2022
SP  - 127
EP  - 140
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/
LA  - en
ID  - UFA_2022_14_4_a9
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%T Singular Hahn--Hamiltonian systems
%J Ufa mathematical journal
%D 2022
%P 127-140
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/
%G en
%F UFA_2022_14_4_a9
B. P. Allahverdiev; H. Tuna. Singular Hahn--Hamiltonian systems. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 127-140. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/