Singular Hahn–Hamiltonian systems
Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 127-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we study a Hahn–Hamiltonian system in the singular case. For this system, the Titchmarsh–Weyl theory is established. In this context, the first part provides a summary of the relevant literature and some necessary fundamental concepts of the Hahn calculus. To pass from the Hahn difference expression to operators, we define the Hilbert space $L_{\omega,q,W} ^{2}((\omega_{0},\infty);\mathbb{C}^{2n})$ in the second part of the work. The corresponding maximal operator $L_{\max}$ are introduced. For the Hahn–Hamiltonian system, we proved Green formula. Then we introduce a regular self-adjoint Hahn–Hamiltonian system. In the third part of the work, we study Titchmarsh-Weyl functions $M(\lambda)$ and circles $\mathcal{C}(a,\lambda)$ for this system. These circles proved to be embedded one to another. The number of square-integrable solutions of the Hahn–Hamilton system is studied. In the fourth part of the work, we obtain boundary conditions in the singular case. Finally, we define a self-adjoint operator in the fifth part of the work.
Keywords: Hahn–Hamiltonian system, singular point, Titchmarsh–Weyl theory.
@article{UFA_2022_14_4_a9,
     author = {B. P. Allahverdiev and H. Tuna},
     title = {Singular {Hahn{\textendash}Hamiltonian} systems},
     journal = {Ufa mathematical journal},
     pages = {127--140},
     year = {2022},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
TI  - Singular Hahn–Hamiltonian systems
JO  - Ufa mathematical journal
PY  - 2022
SP  - 127
EP  - 140
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/
LA  - en
ID  - UFA_2022_14_4_a9
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%T Singular Hahn–Hamiltonian systems
%J Ufa mathematical journal
%D 2022
%P 127-140
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/
%G en
%F UFA_2022_14_4_a9
B. P. Allahverdiev; H. Tuna. Singular Hahn–Hamiltonian systems. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 127-140. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a9/

[1] B.P. Allahverdiev, H. Tuna, “The spectral expansion for the Hahn–Dirac system on the whole line”, Turkish J. Math., 43:3 (2019), 1668-1687 | DOI | MR | Zbl

[2] B.P. Allahverdiev, H. Tuna, “The Parseval equality and expansion formula for singular Hahn–Dirac system”, Emerging applications of differential equations and game theory, eds. S. Alparslan Gök, D. Aruğaslan Çinçin, IGI Global, 2020, 209–235 | DOI

[3] M.H. Annaby, A.E. Hamza, K.A. Aldwoah, “Hahn difference operator and associated Jackson–Nörlund integrals”, J. Optim. Theory Appl., 154:1 (2012), 133-153 | DOI | MR | Zbl

[4] M.H. Annaby, A.E. Hamza, S.D. Makharesh, “A Sturm–Liouville theory for Hahn difference operator”, Frontiers of orthogonal polynomials and $q$-series, eds. Xin Li, Zuhair Nashed, World Scientific, Singapore, 2018, 35–84 | DOI | MR

[5] F.V. Atkinson, Discrete and continuous boundary problems, Acad. Press Inc., New York, 1964 | MR | Zbl

[6] H. Behncke, D. Hinton, “Two singular point linear Hamiltonian systems with an interface condition”, Math. Nachr., 283:3 (2010), 365–378 | DOI | MR | Zbl

[7] W. Hahn, “Über orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nachr., 2:1-2 (1949), 4–34 | DOI | MR | Zbl

[8] W. Hahn, “Ein beitrag zur theorie der orthogonalpolynome”, Monatsh. Math., 95:1 (1983), 19–24 | DOI | MR | Zbl

[9] D.B. Hinton, J.K. Shaw, “On Titchmarsh–Weyl”, J. Diff. Equat., 40:3 (1981), 316–342 | DOI | MR | Zbl

[10] D.B. Hinton, J.K. Shaw, “Titchmarsh–Weyl theory for Hamiltonian systems”, Proc. Conf. “Spectral theory of differential operators” (Birmingham, USA, 1981), North-Holland Math. Stud., 55, 1981, 219–231 | DOI | MR | Zbl

[11] D.B. Hinton, J.K. Shaw, “Parameterization of the $M(\lambda)$-function for a Hamiltonian system of limit circle type”, Proc. Roy. Soc. Edinburgh Sect. A., 93:3-4 (1983), 349–360 | DOI | MR | Zbl

[12] D.B. Hinton, J.K. Shaw, “Hamiltonian systems of limit point or limit circle type with both endpoints singular”, J. Diff. Equat., 50:3 (1983), 444–464 | DOI | MR | Zbl

[13] F. Hira, “Dirac system associated with Hahn difference operator”, Bull. Malays. Math. Sci. Soc., 43:5 (2020), 3481-3497 | DOI | MR | Zbl

[14] A.M. Krall, Hilbert space, boundary value problems and orthogonal polynomials, Birkhäuser Verlag, Basel, 2002 | MR | Zbl

[15] A.M. Krall, “$M(\lambda)$ theory for singular Hamiltonian systems with one singular point”, SIAM J. Math. Anal., 20:3 (1989), 664–700 | DOI | MR | Zbl

[16] A.M. Krall, “$M(\lambda)$-theory for singular Hamiltonian systems with two singular points”, SIAM J. Math. Anal., 20:3 (1989), 701–715 | DOI | MR | Zbl

[17] Y. Shi, “Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems”, Linear Alg. Appl., 416:2-3 (2006), 452–519 | DOI | MR | Zbl

[18] Y. Yalcin, L.G. Sümer, S. Kurtulan, “Discrete-time modeling of Hamiltonian systems”, Turkish J. Electric. Eng. Comput. Sci., 23:1 (2015), 149–170 | DOI | MR