@article{UFA_2022_14_4_a8,
author = {I. T. Habibullin and A. R. Khakimova},
title = {Algebraic reductions of discrete equations of {Hirota-Miwa} type},
journal = {Ufa mathematical journal},
pages = {113--126},
year = {2022},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a8/}
}
I. T. Habibullin; A. R. Khakimova. Algebraic reductions of discrete equations of Hirota-Miwa type. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 113-126. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a8/
[1] R. Hirota, “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR
[2] T. Miwa, “On Hirota's difference equation”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR | Zbl
[3] I. Krichever, P. Wiegmann. A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2, 373–396 (1998) | DOI | MR | Zbl
[4] A.V. Zabrodin, “Hirota's difference equations”, Theor. Math. Phys., 113:2 (1997), 1347–1392 | DOI | DOI | MR
[5] A. Kuniba, T. Nakanishi, J. Suzuki, “T-systems and Y-systems in integrable systems”, J. Phys. A: Math. Theor., 44:10 (2011), 103001, 146 pp. | DOI | MR | Zbl
[6] S.V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theor. Math. Phys., 182:2 (2015), 189–210 | DOI | DOI | MR | Zbl
[7] A.K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theor. Math. Phys., 197:3 (2018), 1779–1796 | DOI | DOI | MR | Zbl
[8] E.V. Ferapontov, V.S. Novikov, I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4933–4974 | DOI | MR | Zbl
[9] I.T. Habibullin, A.R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theor. Math. Phys., 213:2 (2022) | DOI | DOI | MR
[10] A.N. Leznov, A.B. Shabat, “Cut-off conditions for series of perturbation theory”, Integrable systems, BFAN SSSR, 1982, 34–44 (in Russian)
[11] T.V. Chekmarev, “Formulas for the solution of Goursat's problem for a linear system of partial differential equations”, Diff. Equat., 18:9 (1983), 1152–1158 | MR | Zbl
[12] A.V. Zhiber, O.S. Kostrigina, “Goursat problem for nonlinear hyperbolic systems with integrals of the first and second order”, Ufimskij Matem. Zhurn, 3:3 (2011), 67–79 | MR | Zbl
[13] I. Habibullin, M. Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2015), 26 pp. | MR
[14] I.T. Habibullin, M.N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie-Rinehart algebras”, Theor. Math. Phys., 203:1 (2020), 569–581 | DOI | DOI | MR | Zbl
[15] E.V. Ferapontov, I.T. Habibullin, M.N. Kuznetsova, V.S. Novikov, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505 | DOI | MR | Zbl
[16] I.T. Habibullin, A.R. Khakimova, “Characteristic Lie Algebras of Integrable Differential-Difference Equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202 | DOI | MR
[17] I.T. Habibullin, M.N. Kuznetsova, “An algebraic criterion of the Darboux integrability of differential-difference equations and systems”, J. Phys. A: Math. Theor., 54:2021 (2021), 505201, 20 pp. | DOI | MR | Zbl
[18] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Annales de la faculté des Sciences de l'Université de Toulouse: Mathématiques, Serie 2, 1:1 (1899), 31–78 | MR
[19] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Annales de la faculté des Sciences de l'Université de Toulouse: Mathématiques, Serie 2, 1:4 (1899), 439–463 | MR
[20] A.V. Zhiber, N.H. Ibragimov, A.B. Shabat, “Liouville-type equations”, Sov. Math. Dokl., 20 (1979), 1183–1187 | MR | Zbl
[21] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl
[22] O.V. Kaptsov, “On Goursat classification problem”, Programmirovanie, 2 (2012), 68–71 (in Russian) | MR
[23] V.E. Adler, S.Y. Startsev, “Discrete analogues of the Liouville equation”, Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | DOI | MR | Zbl
[24] I. Habibullin, “Characteristic Algebras of Fully Discrete Hyperbolic Type Equations”, SIGMA, 1 (2005), 23 pp. | MR
[25] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x}=t_x+d(t,t_1)$”, J. Math. Phys., 50 (2009), 1–23 | DOI | MR
[26] R.N. Garifullin, R.I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 23 pp. | DOI | MR | Zbl
[27] G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal H4 and H4 families of lattice equations I: first integrals”, J. Phys. A: Math. Theor., 50:34 (2017), 345205, 26 pp. | DOI | MR | Zbl
[28] G. Darboux, Lecons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, Gauthier-Villars, Paris, 1896 | MR
[29] A.B. Shabat, R.I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, BFAN SSSR, Ufa, 1981 (in Russian)
[30] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR | Zbl
[31] D.V. Millionshchikov, S.V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69 | DOI | MR | Zbl
[32] A.V. Zhiber, R.D. Murtazina, I.T. Habibullin, A.B. Shabat, Characteristic Lie rings and non-linear integrable equations, Inst. Computer Studies, M., 2012 (in Russian)