Algebraic reductions of discrete equations of Hirota-Miwa type
Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 113-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For nonlinear discrete equations in the dimension $1+1$ there are easily checked symmetry criterions of integrability which lie in the base of the classification algorithms. A topical problem on creating effective methods for classifying integrable discrete equations with three or more independent variables remains open, since in the multidimensional case the symmetry approach loses its effectiveness due to difficulties related with non-localities. In our recent works we discovered a specific property of discrete equations in the three-dimensional case which seems to be an effective criterion for the integrability of three-dimensional equations. It turned out that many known integrable chains including equations like two-dimensional Toda chain, equation of Toda type with one continuous and two discrete independent variables, equations of Hirota-Miwa type, where all independent variables are discrete are characterized by the fact that they admit cut-off conditions of special form in one of discrete variables which reduce the chain to a system of equations with two independent variables possessing an increased integrability; they possess complete sets of the integrals in each of the characteristics, that is, they are integrable in the Darboux sense. In other words, the characteristic algebras of the obtained finite-field systems have a finite dimension. In this paper, we give examples confirming the conjecture that the presence of a hierarchy of two-dimensional reductions integrable in the Darboux sense is inherent in all integrable discrete equations of the Hirota-Miwa type. Namely we check that the lattice Toda equation and its modified analogue also admit the aforementioned reduction.
Keywords: integrability, lattice Toda equation, characteristic integrals, characteristic algebra.
@article{UFA_2022_14_4_a8,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {Algebraic reductions of discrete equations of {Hirota-Miwa} type},
     journal = {Ufa mathematical journal},
     pages = {113--126},
     year = {2022},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a8/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - Algebraic reductions of discrete equations of Hirota-Miwa type
JO  - Ufa mathematical journal
PY  - 2022
SP  - 113
EP  - 126
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a8/
LA  - en
ID  - UFA_2022_14_4_a8
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%T Algebraic reductions of discrete equations of Hirota-Miwa type
%J Ufa mathematical journal
%D 2022
%P 113-126
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a8/
%G en
%F UFA_2022_14_4_a8
I. T. Habibullin; A. R. Khakimova. Algebraic reductions of discrete equations of Hirota-Miwa type. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 113-126. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a8/

[1] R. Hirota, “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[2] T. Miwa, “On Hirota's difference equation”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR | Zbl

[3] I. Krichever, P. Wiegmann. A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2, 373–396 (1998) | DOI | MR | Zbl

[4] A.V. Zabrodin, “Hirota's difference equations”, Theor. Math. Phys., 113:2 (1997), 1347–1392 | DOI | DOI | MR

[5] A. Kuniba, T. Nakanishi, J. Suzuki, “T-systems and Y-systems in integrable systems”, J. Phys. A: Math. Theor., 44:10 (2011), 103001, 146 pp. | DOI | MR | Zbl

[6] S.V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theor. Math. Phys., 182:2 (2015), 189–210 | DOI | DOI | MR | Zbl

[7] A.K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theor. Math. Phys., 197:3 (2018), 1779–1796 | DOI | DOI | MR | Zbl

[8] E.V. Ferapontov, V.S. Novikov, I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4933–4974 | DOI | MR | Zbl

[9] I.T. Habibullin, A.R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theor. Math. Phys., 213:2 (2022) | DOI | DOI | MR

[10] A.N. Leznov, A.B. Shabat, “Cut-off conditions for series of perturbation theory”, Integrable systems, BFAN SSSR, 1982, 34–44 (in Russian)

[11] T.V. Chekmarev, “Formulas for the solution of Goursat's problem for a linear system of partial differential equations”, Diff. Equat., 18:9 (1983), 1152–1158 | MR | Zbl

[12] A.V. Zhiber, O.S. Kostrigina, “Goursat problem for nonlinear hyperbolic systems with integrals of the first and second order”, Ufimskij Matem. Zhurn, 3:3 (2011), 67–79 | MR | Zbl

[13] I. Habibullin, M. Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2015), 26 pp. | MR

[14] I.T. Habibullin, M.N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie-Rinehart algebras”, Theor. Math. Phys., 203:1 (2020), 569–581 | DOI | DOI | MR | Zbl

[15] E.V. Ferapontov, I.T. Habibullin, M.N. Kuznetsova, V.S. Novikov, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505 | DOI | MR | Zbl

[16] I.T. Habibullin, A.R. Khakimova, “Characteristic Lie Algebras of Integrable Differential-Difference Equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202 | DOI | MR

[17] I.T. Habibullin, M.N. Kuznetsova, “An algebraic criterion of the Darboux integrability of differential-difference equations and systems”, J. Phys. A: Math. Theor., 54:2021 (2021), 505201, 20 pp. | DOI | MR | Zbl

[18] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Annales de la faculté des Sciences de l'Université de Toulouse: Mathématiques, Serie 2, 1:1 (1899), 31–78 | MR

[19] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Annales de la faculté des Sciences de l'Université de Toulouse: Mathématiques, Serie 2, 1:4 (1899), 439–463 | MR

[20] A.V. Zhiber, N.H. Ibragimov, A.B. Shabat, “Liouville-type equations”, Sov. Math. Dokl., 20 (1979), 1183–1187 | MR | Zbl

[21] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl

[22] O.V. Kaptsov, “On Goursat classification problem”, Programmirovanie, 2 (2012), 68–71 (in Russian) | MR

[23] V.E. Adler, S.Y. Startsev, “Discrete analogues of the Liouville equation”, Theor. Math. Phys., 121:2 (1999), 1484–1495 | DOI | DOI | MR | Zbl

[24] I. Habibullin, “Characteristic Algebras of Fully Discrete Hyperbolic Type Equations”, SIGMA, 1 (2005), 23 pp. | MR

[25] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x}=t_x+d(t,t_1)$”, J. Math. Phys., 50 (2009), 1–23 | DOI | MR

[26] R.N. Garifullin, R.I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 23 pp. | DOI | MR | Zbl

[27] G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal H4 and H4 families of lattice equations I: first integrals”, J. Phys. A: Math. Theor., 50:34 (2017), 345205, 26 pp. | DOI | MR | Zbl

[28] G. Darboux, Lecons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, Gauthier-Villars, Paris, 1896 | MR

[29] A.B. Shabat, R.I. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, BFAN SSSR, Ufa, 1981 (in Russian)

[30] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR | Zbl

[31] D.V. Millionshchikov, S.V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69 | DOI | MR | Zbl

[32] A.V. Zhiber, R.D. Murtazina, I.T. Habibullin, A.B. Shabat, Characteristic Lie rings and non-linear integrable equations, Inst. Computer Studies, M., 2012 (in Russian)