Negative binomial regression in dose-effect relationships
Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 96-112

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to problem on estimating the distribution function and its quantiles in the dose-effect relationships with nonparametric negative binomial regression. Most of the mathematical researches on dose-response relationships concerned models with binomial regression, in particular, models with binary data. Here we propose a kernel-based estimates for the distribution function, the kernels of which are weighted by a negative binomial random variable at each covariate. These covariates are quasirandom van der Corput and Halton low-discrepancy sequences. Our estimates are consistent, that is, they converge to their optimal values in probability as the number of observations $n$ grows to infinity. The proposed estimats are compared by their mean-square errors. We show that our estimates have a smaller asymptotic variance in comparison, in particular, with estimates of the Nadaraya-Watson type and other estimates. We present nonparametric estimates for the quantiles obtained by inverting a kernel estimate of the distribution function. We show that the asymptotic normality of these bias-adjusted estimates is preserved under some regularity conditions. We also provide a multidimensional generalization of the obtained results.
Keywords: negative binomial response model, effective dose level, nonparametric estimate.
@article{UFA_2022_14_4_a7,
     author = {M. S. Tikhov},
     title = {Negative binomial regression  in dose-effect relationships},
     journal = {Ufa mathematical journal},
     pages = {96--112},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a7/}
}
TY  - JOUR
AU  - M. S. Tikhov
TI  - Negative binomial regression  in dose-effect relationships
JO  - Ufa mathematical journal
PY  - 2022
SP  - 96
EP  - 112
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a7/
LA  - en
ID  - UFA_2022_14_4_a7
ER  - 
%0 Journal Article
%A M. S. Tikhov
%T Negative binomial regression  in dose-effect relationships
%J Ufa mathematical journal
%D 2022
%P 96-112
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a7/
%G en
%F UFA_2022_14_4_a7
M. S. Tikhov. Negative binomial regression  in dose-effect relationships. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 96-112. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a7/