Lower bound for minimum of modulus of entire function of genus zero with positive roots
Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 76-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider entire function of genus zero, the roots of which are located at a single ray. On the class of all such functions, we obtain close to optimal lower bounds for the minimum of the modulus on a sequence of the circumferences in terms of a negative power of the maximum of the modulus on the same circumferences under a restriction on the quotient $a>1$ of the radii of neighbouring circumferences. We introduce the notion of the optimal exponent $d(a)$ as an extremal exponent of the maximum of the modulus in this problem. We prove two-sided estimates for the optimal exponent for a “test” value $a=\tfrac{9}{4}$ and for $a\in(1,\tfrac{9}{8}]$. We find an asymptotics for $d(a)$ as $a\rightarrow1$. The obtained result differs principally from the classical $\cos(\pi\rho)$-theorem containing no restrictions for the frequencies of the radii of the circumferences, on which the minimum of the modulus of an entire function of order $\rho\in[0,1]$ is estimated by a power of the maximum of its modulus.
Keywords: entire function, minimum of modulus, maximum of modulus.
@article{UFA_2022_14_4_a6,
     author = {A. Yu. Popov and V. B. Sherstyukov},
     title = {Lower bound for minimum of modulus of entire function of genus zero with positive roots},
     journal = {Ufa mathematical journal},
     pages = {76--95},
     year = {2022},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a6/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - V. B. Sherstyukov
TI  - Lower bound for minimum of modulus of entire function of genus zero with positive roots
JO  - Ufa mathematical journal
PY  - 2022
SP  - 76
EP  - 95
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a6/
LA  - en
ID  - UFA_2022_14_4_a6
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A V. B. Sherstyukov
%T Lower bound for minimum of modulus of entire function of genus zero with positive roots
%J Ufa mathematical journal
%D 2022
%P 76-95
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a6/
%G en
%F UFA_2022_14_4_a6
A. Yu. Popov; V. B. Sherstyukov. Lower bound for minimum of modulus of entire function of genus zero with positive roots. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 76-95. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a6/

[1] G. Valiron, “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulièr”, Ann. Fac. Sci. Toulouse, 5 (1913), 117–257 | DOI | MR

[2] A. Wiman, “Über eine Eigenschaft der ganzen Functionen von der Höhe Null”, Math. Ann., 76 (1915), 197–211 | DOI | MR

[3] M.L. Cartwright, “On the minimum modulus of integral functions”, Proc. Cambridge Philos. Soc., 30 (1934), 412–420 | DOI | MR | Zbl

[4] W.K. Hayman, “The minimum modulus of large integral functions”, Proc. London Math. Soc., 2:3 (1952), 469–512 | DOI | MR | Zbl

[5] R.P. Boas, Entire Functions, Academic Press Inc., New York, 1954 | MR | Zbl

[6] A.A. Goldberg, I.V. Ostrovskii, Value distribution of meromorphic functions, Amer. Math. Soc., Providence, RI, 2008 | MR | MR | Zbl

[7] W.K. Hayman, Subharmonic Functions, v. 2, Academic Press, London–New York, 1989 | MR | Zbl

[8] A.A. Gol'dberg, I.V. Ostrovskii, “Recent results on the growth and distribution of the values of integral and meromorphic functions of genus zero”, Russian Math. Surv., 16:4 (1961), 47–58 | DOI | MR

[9] W.K. Hayman, E.F. Lingham, Research Problems in Function Theory, Fiftieth Anniversary Edition, Problem Books in Mathematics, Springer, 2019 | DOI | MR | Zbl

[10] A.M. Gaisin, “Solution of the Pólya problem”, Sb. Math., 193:6 (2002), 825–845 | DOI | DOI | MR | Zbl

[11] A.Yu. Popov, “Lower bound for the minimum of modulus of analytic function on circumference by negative power of its norm on larger circumference”, Proc. Steklov Inst. Math., 2022 | DOI | MR | Zbl

[12] A.Yu. Popov, “New lower bound for the modulus of an analytic function”, Chelyab. Fiz.-Mat. Zhurn., 4:2 (2019), 155–164 (in Russian) | MR | Zbl