@article{UFA_2022_14_4_a3,
author = {J. D. Dekhkonov},
title = {On $(k_0)$-translation-invariant and $(k_0)$-periodic {Gibbs} measures for {Potts} model on {Cayley} tree},
journal = {Ufa mathematical journal},
pages = {42--55},
year = {2022},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a3/}
}
J. D. Dekhkonov. On $(k_0)$-translation-invariant and $(k_0)$-periodic Gibbs measures for Potts model on Cayley tree. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 42-55. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a3/
[1] H.O. Georgii, Gibbs measures and phase transitions, Walter de Gruyter, Berlin, 1992 | MR
[2] C.J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[3] Ya.G. Sinaj, Theory of phase transitions: rigorous results, Pergamon Press, Oxford, 1982 | MR | Zbl
[4] U.A. Rozikov, Gibbs measures on Cayley trees, World scientific, 2013 | MR | Zbl
[5] N.N. Ganikhodzhaev, “Pure phases of the ferromagnetic Potts model with three states on a second-order Bethe lattice”, Theor. Math. Phys., 85:2 (1990), 1125–1134 | DOI | MR
[6] N.N. Ganikhodzhaev, “Pure phases of the ferromagnetic Potts model on the Bethe lattice”, Dokl. AN RUz., 6 (1992), 4–7
[7] N.N. Ganikhodzhaev, U.A. Rozikov, “Discription of periodic extreme Gibbs measures of some lattice models on the Cayley tree”, Theor. Math. Phys., 111:1 (1997), 480–486 | DOI | DOI | MR | Zbl
[8] N.N. Ganikhodjaev, U.A. Rozikov, “On Potts model with countable set of spin values on Cayley tree”, Letters in Math. Phys., 75:1 (2006), 99–109 | DOI | MR | Zbl
[9] A.B. Babaev, M.A. Magomedov, A.K. Murtazaev, F.A. Kassan-Ogly, A.I. Proshkin, “Phase transitions in a two-dimensional antiferromagnetic Potts model on a triangular lattice with next-nearest neighbor interactions”, J. Exper. Theor. Phys., 122:2 (2016), 310–317 | DOI
[10] M.A. Magomedov, A.K. Murtazaev, L.K. Magomedova, “Phase transitision in the Potts model on triangular lattice”, Vestnik DGU. Ser. 1. Estest. Nauki, 32:4 (2017), 14–23
[11] L.N. Schur, L.V. Schur, “Masshtabnoe modelirovanie – algoritm parallelnogo otzhiga”, Proceedings of the VIII International Conference «Distributed Computing and Grid-technologies in Science and Education», GRID 2018 (Dubna, Moscow region, Russia, September 10-14, 2018)
[12] F.A. Kassan-Ogly, “One-dimensional 3-state and 4-state standard Potts models in magnetic field”, Phase Transitions, 71:1 (2000), 39–55 | DOI
[13] A.K. Murtazaev, A.B. Babaev, “Phase transitions in a three-dimensional weakly diluted potts model with $q=5$”, Phys. Solid State, 63:12 (2021), 1884–1888 | DOI | DOI
[14] U.A. Rozikov, R.M. Khakimov, “Periodic Gibbs measures for the Potts model on the Cayley tree”, Theor. Math. Phys., 175:2 (2013), 699–709 | DOI | DOI | MR | Zbl
[15] C. Külske, U.A. Rozikov, R.M. Khakimov, “Description of translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, Jour. Stat. Phys., 156:1 (2014), 189–200 | DOI | MR | Zbl
[16] L.V. Bogachev, U.A. Rozikov, “On the uniqueness of Gibbs measure in the Potts model on a Cayley tree with external field”, J. Stat. Mech. Theory Exp., 7 (2019), 073205, 76 pp. | DOI | MR | Zbl
[17] U.A. Rozikov, “Gibbs measures of Potts model on Cayley trees: a survey and applications”, Rev. Math. Phys., 33 (2021), 2130007, 58 pp. | DOI | MR | Zbl
[18] R.M. Khakimov, F.Kh. Khaidarov, “Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree”, Theor. Math. Phys., 189:2 (2016), 1651–1659 | DOI | DOI | MR | Zbl
[19] U.A. Rozikov, M.M. Rakhmatullaev, “Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree”, Theor. Math. Phys., 160:3 (2009), 1292–1300 | DOI | DOI | MR | Zbl
[20] M.M. Rakhmatullaev, “Weakly periodic Gibbs measures and ground states for the Potts model with competing interactions on the Cayley tree”, Theor. Math. Phys., 176:3 (2013), 1236–1251 | DOI | DOI | MR | Zbl
[21] H. Akin, U.A. Rozikov, S. Temir, “A new set of limiting Gibbs measures for the Ising model on a Cayley tree”, Jour. Stat. Phys., 142:2 (2011), 314–321 | DOI | MR | Zbl
[22] M.A. Rakhmatullaev, “$(k_0)$-periodic Gibbs measures for the Ising model on the Cayley tree”, Dokl. AN RUz, 3 (2016), 9–12
[23] M.M. Rahmatullaev, “Ising model on trees: $(k_0)$-non translation-invariant Gibbs measures”, Journal of Physics: Conference Series, 819 (2017), 012019 | DOI | MR
[24] M.M. Rahmatullaev, F.K. Rafikov , Sh.Kh. Azamov, “On constructive description of Gibbs measures for the Potts model on a Cayley tree”, Ukr. Mat. Zh., 73:7 (2021), 938–950 | DOI | MR | Zbl
[25] U.A. Rozikov, M.M. Rahmatullaev, “On free energies of the Potts model on the Cayley tree”, Theor. Math. Phys., 190:1 (2017), 98–108 | DOI | MR | Zbl
[26] M.M. Rahmatullaev, “On weakly periodic Gibbs measures for the Potts model with external field on the Cayley tree”, Ukr. Mat. Zh., 68:4 (2016), 529–541 | MR | Zbl
[27] M.M. Rahmatullaev, “Weakly Periodic Gibbs Measures of the Potts Model with a Special External Field on a Cayley Tree”, J. Math. Phys. Analysis, Geometry, 12:4 (2016), 302–314 | MR | Zbl
[28] M.M. Rahmatullaev, D. Gandolfo, U. A. Rozikov, J. Ruiz, “On free energies of the Ising model on the Cayley tree”, J. Stat. Phys., 150:6 (2013), 1201–1217 | DOI | MR | Zbl
[29] U.A. Rozikov, R.M. Khakimov, “Periodic Gibbs measures for the Potts model on the Cayley tree”, Theor. Math. Phys., 175:2 (2013), 699–709 | DOI | DOI | MR | Zbl
[30] M.M. Rahmatullaev, “The existence of weakly periodic Gibbs measures for the Potts model on the Cayley tree”, Theor. Math. Phys., 180:3 (2014), 1019–1029 | DOI | MR | Zbl
[31] R.M. Khakimov, M.T. Makhammadaliev, “Translation Invariance of the periodic Gibbs measures for the Potts model on the Cayley tree”, Theor. Math. Phys., 199:2 (2019), 726–735 | DOI | DOI | MR | Zbl