Mots-clés : partial indices
@article{UFA_2022_14_4_a0,
author = {V. M. Adukov},
title = {Normalization of {Wiener{\textendash}Hopf} factorization for $2\times 2$ matrix functions and its application},
journal = {Ufa mathematical journal},
pages = {1--13},
year = {2022},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a0/}
}
V. M. Adukov. Normalization of Wiener–Hopf factorization for $2\times 2$ matrix functions and its application. Ufa mathematical journal, Tome 14 (2022) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/UFA_2022_14_4_a0/
[1] I.C. Gohberg, I.A. Fel'dman, Convolution equations and projection methods for their solution, Amer. Math. Soc., Providence, R.I., 1974 | MR | Zbl
[2] K.F. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory, Advances and Applications, 1981 | MR | Zbl
[3] G.S. Litvinchuk, I.M. Spitkovskii, Factorization of measurable matrix functions, Operator Theory, Advances and Applications, 1987 | DOI | MR
[4] V.G. Daniele, R.S. Zich, The Wiener–Hopf method in electromagnetics, ISMB Series, SciTech Publishing, Edison, N.Y., 2014
[5] J.B. Lawrie, I.D. Abrahams, “A brief historical perspective of the Wiener–Hopf technique”, J. Eng. Math., 59 (2007), 351–358 | DOI | MR | Zbl
[6] I.D. Abrahams, “On the application of the Wiener–Hopf technique to problems in dynamic elasticity”, Wave Motion, 36 (2002), 311–333 | DOI | MR | Zbl
[7] L.D. Faddeev, L.A. Takhtadzhyan, Hamiltonian methods in the theory of solitons, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl
[8] I.C. Gohberg, M.G. Krejn, “Systems of integral equations on a half line with kernels depending on the difference of arguments”, Am. Math. Soc. Transl. Ser. II, 14 (1960), 217–287 | DOI | MR | Zbl | Zbl
[9] N.P. Vekua, Systems of singular integral equations, P. Noordhoff, Ltd., Groningen, 1967 | MR | Zbl
[10] I.C. Gokhberg, M.G. Krein, “On the stable system of partial indices in the Hilbert problem for many unknown functions”, Dokl. Akad. Nauk SSSR, 119:5 (1958), 854–857 (in Russian) | Zbl
[11] B.V. Bojarski, “On stability of Hilbert problem for holomorphic vector”, Soobsch. AN Gruz. SSR, 21:4 (1958), 391–398 (in Russian)
[12] V.M. Adukov, G. Mishuris, S. Rogosin, “Exact conditions for preservation of the partial indices of a perturbed triangular $2\times 2$ matrix function”, Proc. R. Soc. A, 476:2237 (2020) | DOI | MR
[13] N.V. Adukova, V.M. Adukov, “On effective criterion of stability of partial indices for matrix polynomials”, Proc. R. Soc. A, 476:2238 (2020) | DOI | MR | Zbl
[14] M.A. Shubin, “Factorization of parameter-dependent matrix-functions in normed rings and certain related questions in the theory of Noetherian operators”, Sb. Math., 2:4 (1967), 543–560 | DOI | MR
[15] N.V. Adukova, V.L. Dilman, “Stability of factors of the canonical Wiener-Hopf factorization of matrix functions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:1 (2021), 5–13 (in Russian)
[16] V.M. Adukov, N.V. Adukova, “On a hybrid method of constructing canonical Wiener-Hopf factorization”, Proc. of XXII International Scientific Conference, Systems of computer mathematics and applications, 22, Smolensk State Univ. Publ., Smolensk, 2021, 195–202 (in Russian)
[17] I.T. Habibullin, “The inverse scattering problem for difference equations”, Sov. Math. Dokl., 20 (1979), 1233–1236 | MR | Zbl
[18] I.T. Habibullin, A.G. Shagalov, “Numerical realization of the inverse scattering method”, Theor. Math. Phys., 83:3 (1990), 565–573 | DOI | MR | Zbl
[19] G.D. Birkhoff, “A theorem on matrices of analytic functions”, Math. Ann., 74 (1913), 122–133 | DOI | MR
[20] I.S. Chebotaru, “Reduction of systems of Wiener-Hopf equations to systems with zero indices”, Izv. AN MSSR, 8 (1967), 54–66 (in Russian) | MR | Zbl
[21] R.A. Horn, C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985 | MR | MR | Zbl