Mots-clés : volume of a domain
@article{UFA_2022_14_3_a9,
author = {R. G. Nasibullin},
title = {One-dimensional $L_p${-Hardy-type} inequalities},
journal = {Ufa mathematical journal},
pages = {97--116},
year = {2022},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a9/}
}
R. G. Nasibullin. One-dimensional $L_p$-Hardy-type inequalities. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 97-116. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a9/
[1] V.I. Levin, “On inequalities. II. On one class of integral inequalities”, Matem. Sb., 4(46):2 (1938), 309–324 | Zbl
[2] F.G. Avkhadiev, L.A. Aksent'ev, A. M. Elizarov, “Sufficient conditions for the finite-valence of analytic functions, and their applications”, J. Math. Sci., 49:1 (1990), 715–799 | DOI | MR | Zbl
[3] F.G. Avkhadiev, L.A. Aksent'ev, “The main results on sufficient cjnditions for an analytic function to be schlicht”, Russ. Math. Surv., 30:4 (1975), 1–63 | DOI | MR | Zbl
[4] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[5] Z. Nehari, “Some criteria of univalence”, Proc. Amer. Math. Soc., 5 (1954), 700–704 | DOI | MR | Zbl
[6] F.G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | DOI | MR | Zbl
[7] F.G. Avkhadiev, K.-J. Wirths, “Weighted Hardy inequalities with sharp constants”, Lobachevskii Journal of Mathematics, 31:1 (2010), 1–7 | DOI | MR | Zbl
[8] F.G. Avkhadiev, K.-J. Wirths, “Unified Poincare and Hardy inequalities with sharp constants for convex domains”, Z. Angev. Math. Mech., 14:8-9 (2007), 532–542 | MR
[9] F.G. Avkhadiev, “Brezis-Marcus problem and its generalizations”, J. Math. Sci., 252:3 (2021), 291–301 | DOI | MR | Zbl
[10] F.G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proceedings of the Steklov Institute of Mathematics, 255:1 (2006), 2–12 | DOI | MR | Zbl
[11] H. Brezis, M. Marcus, “Hardy's inequalities revisited”, Dedicated to E. De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25:1-2 (1998), 217–237 | MR
[12] S. Filippas, V.G. Maz'ya, A. Tertikas, “On a question of Brezis and Marcus”, Calc. Var. Partial Diff. Eq., 25:4 (2006), 491–501 | DOI | MR | Zbl
[13] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl
[14] T. Matskewich, P.E. Sobolevskii, “The best possible constant in generalized Hardy's inequality for convex domains in $\mathbb{R}^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR | Zbl
[15] M. Marcus, V.J. Mitzel, Y. Pinchover, “On the best constant for Hardy's inequality in $R^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3255 | DOI | MR | Zbl
[16] R.G. Nasibullin, R.V. Makarov, “Hardy's inequalities with remainders and Lamb-type equations”, Siber. Math. J., 61:6 (2020), 1102–1119 | DOI | MR | Zbl
[17] R.V. Makarov, R.G. Nasibulli, “Hardy type inequalities and parametric Lamb equation”, Indagationes Mathematicae, 31:4 (2020), 632–649 | DOI | MR | Zbl
[18] R.G. Nasibullin, “Hardy and Rellich type inequalities with remainders”, Czechoslovak Math. J., 72:1 (2022), 87–110 | DOI | MR
[19] R.G. Nasibullin., “Sharp conformally invariant Hardy-type inequalities with remainders”, Eurasian Math. J., 12:3 (2021), 46–56 | DOI | MR | Zbl
[20] R.G. Nasibullin, “Brezis-Marcus type inequalities with Lamb constant”, Sibir. Èlektron. Matem. Izv., 16 (2019), 449–464 | MR | Zbl
[21] R.G. Nasibullin, “Sharp Hardy type inequalities with weights depending on Bessel function”, Ufa Math. J., 9:1 (2017), 89–97 | DOI | MR | Zbl
[22] J. Tidblom, “A geometrical version of Hardy's inequality for $ W^{1,p}_0(\Omega)$”, Proc. Amer. Math. Soc., 132 (2004), 2265–2271 | DOI | MR | Zbl
[23] A.A. Balinsky, W.D. Evans, R.T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Heidelberg - New York - Dordrecht - London, 2015 | DOI | MR
[24] W.D. Evans, R.T. Lewis, “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490 | DOI | MR | Zbl
[25] G.N. Watson, A threatise on the theory of the Bessel Functions, Cambridge Univ. Press, Cambridge, 1966 | MR
[26] H. Lamb, “Note on the induction of electric currents in a cylinder placed across the lines of magnetic force”, Proc. Lond. Math. Soc., XV (1884), 270–274 | MR
[27] J. Hersch, “Sur la fréquence fondamentale d'une membrande vibrante; évaluation par défaut et principe de maximum”, J. Math. Phys. Appl., 11 (1960), 387–412 | MR
[28] C. Bandle, Isoperimetri inequalities and appliations, Pitman Adv. Publ. Program., Boston-London-Melbourne, 1980 | MR
[29] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1973 | MR
[30] E.B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge University Press, Cambridge, 1995 | MR | Zbl