One-dimensional $L_p$-Hardy-type inequalities
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 97-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish one-dimensional $L_p$-Hardy inequalities with additional terms and use them for justifying their multidimensional analogues in convex domains with finite volumes. We obtain variational inequalities with power-law weights being generalizations of the corresponding inequalities presented earlier in papers by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom. We formulate and prove inequalities valid for arbitrary domains, and then we simplify them substantially for the class of convex domains. The constants in the additional terms in these spatial inequalities depend on the volume or on the diameter of the domain. As a corollary of the obtained results we get estimates for the first eigenvalue of the $p$-Laplacian subject to the Dirichlet boundary conditions.
Keywords: Hardy inequality, additional term, one-dimensional inequality, distance function, diameter of a domain, first eigenvalue of the Dirichlet problem.
Mots-clés : volume of a domain
@article{UFA_2022_14_3_a9,
     author = {R. G. Nasibullin},
     title = {One-dimensional $L_p${-Hardy-type} inequalities},
     journal = {Ufa mathematical journal},
     pages = {97--116},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a9/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - One-dimensional $L_p$-Hardy-type inequalities
JO  - Ufa mathematical journal
PY  - 2022
SP  - 97
EP  - 116
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a9/
LA  - en
ID  - UFA_2022_14_3_a9
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T One-dimensional $L_p$-Hardy-type inequalities
%J Ufa mathematical journal
%D 2022
%P 97-116
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a9/
%G en
%F UFA_2022_14_3_a9
R. G. Nasibullin. One-dimensional $L_p$-Hardy-type inequalities. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 97-116. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a9/

[1] V.I. Levin, “On inequalities. II. On one class of integral inequalities”, Matem. Sb., 4(46):2 (1938), 309–324 | Zbl

[2] F.G. Avkhadiev, L.A. Aksent'ev, A. M. Elizarov, “Sufficient conditions for the finite-valence of analytic functions, and their applications”, J. Math. Sci., 49:1 (1990), 715–799 | DOI | MR | Zbl

[3] F.G. Avkhadiev, L.A. Aksent'ev, “The main results on sufficient cjnditions for an analytic function to be schlicht”, Russ. Math. Surv., 30:4 (1975), 1–63 | DOI | MR | Zbl

[4] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[5] Z. Nehari, “Some criteria of univalence”, Proc. Amer. Math. Soc., 5 (1954), 700–704 | DOI | MR | Zbl

[6] F.G. Avkhadiev, K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | DOI | MR | Zbl

[7] F.G. Avkhadiev, K.-J. Wirths, “Weighted Hardy inequalities with sharp constants”, Lobachevskii Journal of Mathematics, 31:1 (2010), 1–7 | DOI | MR | Zbl

[8] F.G. Avkhadiev, K.-J. Wirths, “Unified Poincare and Hardy inequalities with sharp constants for convex domains”, Z. Angev. Math. Mech., 14:8-9 (2007), 532–542 | MR

[9] F.G. Avkhadiev, “Brezis-Marcus problem and its generalizations”, J. Math. Sci., 252:3 (2021), 291–301 | DOI | MR | Zbl

[10] F.G. Avkhadiev, “Hardy-type inequalities on planar and spatial open sets”, Proceedings of the Steklov Institute of Mathematics, 255:1 (2006), 2–12 | DOI | MR | Zbl

[11] H. Brezis, M. Marcus, “Hardy's inequalities revisited”, Dedicated to E. De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25:1-2 (1998), 217–237 | MR

[12] S. Filippas, V.G. Maz'ya, A. Tertikas, “On a question of Brezis and Marcus”, Calc. Var. Partial Diff. Eq., 25:4 (2006), 491–501 | DOI | MR | Zbl

[13] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl

[14] T. Matskewich, P.E. Sobolevskii, “The best possible constant in generalized Hardy's inequality for convex domains in $\mathbb{R}^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR | Zbl

[15] M. Marcus, V.J. Mitzel, Y. Pinchover, “On the best constant for Hardy's inequality in $R^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3255 | DOI | MR | Zbl

[16] R.G. Nasibullin, R.V. Makarov, “Hardy's inequalities with remainders and Lamb-type equations”, Siber. Math. J., 61:6 (2020), 1102–1119 | DOI | MR | Zbl

[17] R.V. Makarov, R.G. Nasibulli, “Hardy type inequalities and parametric Lamb equation”, Indagationes Mathematicae, 31:4 (2020), 632–649 | DOI | MR | Zbl

[18] R.G. Nasibullin, “Hardy and Rellich type inequalities with remainders”, Czechoslovak Math. J., 72:1 (2022), 87–110 | DOI | MR

[19] R.G. Nasibullin., “Sharp conformally invariant Hardy-type inequalities with remainders”, Eurasian Math. J., 12:3 (2021), 46–56 | DOI | MR | Zbl

[20] R.G. Nasibullin, “Brezis-Marcus type inequalities with Lamb constant”, Sibir. Èlektron. Matem. Izv., 16 (2019), 449–464 | MR | Zbl

[21] R.G. Nasibullin, “Sharp Hardy type inequalities with weights depending on Bessel function”, Ufa Math. J., 9:1 (2017), 89–97 | DOI | MR | Zbl

[22] J. Tidblom, “A geometrical version of Hardy's inequality for $ W^{1,p}_0(\Omega)$”, Proc. Amer. Math. Soc., 132 (2004), 2265–2271 | DOI | MR | Zbl

[23] A.A. Balinsky, W.D. Evans, R.T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Heidelberg - New York - Dordrecht - London, 2015 | DOI | MR

[24] W.D. Evans, R.T. Lewis, “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490 | DOI | MR | Zbl

[25] G.N. Watson, A threatise on the theory of the Bessel Functions, Cambridge Univ. Press, Cambridge, 1966 | MR

[26] H. Lamb, “Note on the induction of electric currents in a cylinder placed across the lines of magnetic force”, Proc. Lond. Math. Soc., XV (1884), 270–274 | MR

[27] J. Hersch, “Sur la fréquence fondamentale d'une membrande vibrante; évaluation par défaut et principe de maximum”, J. Math. Phys. Appl., 11 (1960), 387–412 | MR

[28] C. Bandle, Isoperimetri inequalities and appliations, Pitman Adv. Publ. Program., Boston-London-Melbourne, 1980 | MR

[29] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1973 | MR

[30] E.B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge University Press, Cambridge, 1995 | MR | Zbl