@article{UFA_2022_14_3_a6,
author = {A. A. Klyachin},
title = {On $C^1$-convergence of piecewise polynomial solutions to a fourth order variational equation},
journal = {Ufa mathematical journal},
pages = {60--69},
year = {2022},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a6/}
}
A. A. Klyachin. On $C^1$-convergence of piecewise polynomial solutions to a fourth order variational equation. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 60-69. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a6/
[1] Butterworth-Heinemann, Oxford, 1986 | MR
[2] P.N. Vabishchevich, “Numerical solution of variational elliptic inequalities of fourth order”, Comput. Math. Math. Phys., 24:5 (1984), 19–24 | DOI | MR | Zbl
[3] V.G. Prikazchikov, “An asymptotic estimate of the accuracy of a discrete spectral problem”, Comput. Math. Math. Phys., 31:4 (1991), 97–101 | MR | MR | Zbl
[4] G.K. Berikelashvili, “On the rate of convergence of a difference solution of the first boundary value problem for a fourth-order elliptic equation”, Differ. Equat., 35:7 (1999), 967–973 | MR | Zbl
[5] Yu.A. Bogan, “On the potential method for a fourth-order elliptic equation in anisotropic elasticity theory”, Sibir. Zhurn. Indust. Matem., 3:2 (2000), 29–34 | MR | Zbl
[6] V. V. Karachik, “Solving a problem of Robin type for biharmonic equation”, Russ. Math., 62:2 (2018), 34–48 | DOI | MR | Zbl
[7] E.A. Utkina, “Neumann problem for one equation fourth order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(19) (2009), 29–37 | DOI | Zbl
[8] A.L. Ushakov, “Iteration factorization for numerical solving a fourth order elliptic equation in a rectangular domain”, Vestnik Yuzhno-Ural. Univ. Ser. Matem. Mekh. Fiz., 6:1 (2014), 42–49 | Zbl
[9] M.M. Karchevsky, “Mixed method of finite elements for nonclassical boundary value problems in the theory of shallow shells”, Uchenye Zapis. Kazan. Univ. Ser. Fiz.-Matem. Nauki, 158, no. 3, 2016, 322–335
[10] V.P. Shapeev, V.A. Belyaev, “Solving the biharmonic equation with high order accuracy in irregular domains by the least squares collocation method”, Vych. Metod. Progr., 19:4 (2018), 340–355
[11] M. Ben-Artzi, I. Chorev, J.-P. Croisille, D. Fishelov, “A compact difference scheme for the biharmonic equation in planar irregular domains”, SIAM J. Numer. Anal., 47:4 (2009) | DOI | MR | Zbl
[12] I. Altas, J. Dym, M.M. Gupta, R. Manohar, “Multigrid solution of automatically generated high-order discretizations for the biharmonic equation”, SIAM J. Sci. Comput., 19 (1998), 1575–1585 | DOI | MR | Zbl
[13] A.A. Klyachin, V.A. Klyachin, “The approximation of the fourth-order partial differential equations in the class of the piecewise polynomial functions on the triangular grid”, Matem. Fiz. Kompyut. Model., 22:2 (2019), 65–72 | MR
[14] A.A. Klyachin, “Estimation of the error of calculating the functional containing higher-order derivatives on a triangular grid”, Sibir. Èlektron. Matem. Izv., 16 (2019), 1856–1867 | MR
[15] A. Ženišek, “Interpolation Polynomials on the Triangle”, Numer. Math., 15 (1970), 283–296 | DOI | MR
[16] J.H. Bramble, M. Zlamal, “Triangular elements in the finite element method”, Math. Comp., 24(112) (1970), 809–820 | DOI | MR
[17] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl