@article{UFA_2022_14_3_a5,
author = {O. A. Ivanova and S. N. Melikhov},
title = {Hadamard type operators},
journal = {Ufa mathematical journal},
pages = {51--59},
year = {2022},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a5/}
}
O. A. Ivanova; S. N. Melikhov. Hadamard type operators. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 51-59. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a5/
[1] L.A. Ajzenberg, “The general form of a continuous linear functional in spaces of functions that are holomorphic in convex domains of $\mathbb{C}^N$”, Sov. Math. Dokl, 7 (1966), 198-202 | MR | Zbl
[2] A.V. Bratishchev, “Linear operators whose symbols are functions of the products of their arguments”, Dokl. Math., 59:2 (1999), 177–180 | MR | Zbl
[3] A.V. Bratishchev, “On Gelfond-Leontiev operators of generalized differentiation”, J. Math. Sci., 252:3 (2021), 319–344 | DOI
[4] V.S. Vladimirov, Methods of theory of functions of many complex variables, Nauka, M., 1964 (in Russian) | MR
[5] O.A. Ivanova, S.N. Melikhov, “Operators of almost Hadamard-type and the Hardy-Littlewood operator in the space of entire functions of several complex variables”, Math. Notes, 110:1 (2021), 61–71 | DOI | DOI | MR
[6] S.S. Linchuk, “Diagonal operators in spaces of analytic functions and their applications”, Topical issues in theory of functions, Rostov State Univ. Publ., Rostov-on-Don, 1987, 118–121 (in Russian) | MR
[7] V.V. Napalkov, Convolution equations in multidimensional spaces, Nauka, M., 1982 (in Russian)
[8] A.P. Robertson, W.J. Robertson, Topological vector spaces, Cambridge Univ. Press, Cambridge, 1964 | MR | MR | Zbl
[9] P. Domański, M. Langenbruch, “Representation of multipliers on spaces of real analytic functions”, Analysis, 32 (2012), 137–162 | DOI | MR | Zbl
[10] P. Domański, M. Langenbruch, “Algebra of multipliers on the space of real analytic functions of one variable”, Studia Math., 212 (2012), 155–171 | DOI | MR | Zbl
[11] P. Domański, M. Langenbruch, “Hadamard multipliers on spaces of real analytic functions”, Adv. Math., 240 (2013), 575–612 | DOI | MR | Zbl
[12] P. Domański, M. Langenbruch, “Multiplier projections on spaces of real analytic functions in several variables”, Comp. Var. Elliptic Equ., 62 (2017), 241-268 | DOI | MR | Zbl
[13] P. Domański, M. Langenbruch, “Surjectivity of Hadamard type operators on spaces of smooth functions”, Revista de la Real Acad. de Ciencias Ex. Fis. y Naturales Serie A-Mat, 113 (2019), 1625–1676 | DOI | MR | Zbl
[14] P. Domański, M. Langenbruch, D. Vogt, “Hadamard type operators on spaces of real analytic functions in several variables”, J. Funct. Anal., 269 (2015), 3868–3913 | DOI | MR | Zbl
[15] L. Hörmander, Notions of Convexity, Birkhäuser, 1994 | MR | Zbl
[16] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 191:1–2 (1953), 30–49 | DOI | MR | Zbl
[17] A. Martineau, “Sur la topologie des espaces de fonctions holomorphes”, Math. Annalen, 163:1 (1966), 62–88 | DOI | MR | Zbl
[18] M. Trybula, “Hadamard multipliers on spaces of holomorphic functions”, Int. Equ. Oper. Theory, 88 (2015), 249–268 | DOI | MR
[19] D. Vogt, “Hadamard type operators on spaces of smooth functions”, Math. Nachr., 288 (2015), 353–361 | DOI | MR | Zbl
[20] D. Vogt, “Hadamard operators on $\mathcal D'(\mathbb R^N)$”, Studia Math., 237 (2017), 137–152 | DOI | MR | Zbl
[21] D. Vogt, “Hadamard operators on $\mathcal D'(\Omega)$”, Math. Nachr., 290 (2017), 1374–1380 | DOI | MR | Zbl
[22] D. Vogt, “$\mathcal E'$ as an algebra by multiplicative convolution”, Funct. Approx. Comment. Math., 59:1 (2018), 117–128 | DOI | MR | Zbl
[23] D. Vogt, “Hadamard type operators on temperate distributions”, J. Math. Anal. Appl., 481:2 (2020), 123499 | DOI | MR | Zbl