Hadamard type operators
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 51-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Hadamard type operators in the spaces of functions holomorphic in an open ball in $\mathbb{C}^N$ centered at the origin. These are continuous linear operators, for which each monomial is an eigenvector. We obtain a representation of Hadamard operators in the form of a multiplicative convolution. The proof of this representation employs essentially Fantappiè transformation realizing dual to the spaces of holomorphic functions and the holomorphy property of the characteristic function of a continuous linear operator in them. The applied method allows us to reduce the problem on representation of a Hadamard operator to the problem on holomorphic continuation of a function holomorphic at the point $0$ into a given open ball in $\mathbb{C}^N$ with $l_1$-norm. We prove that the space of the Hadamard type operators from one mentioned space into another with the topology of the bounded convergence is linearly topologically isomorphic to the strong dual to the space of the germs of all functions holomorphic on a closed polydisk.
Keywords: Hadamard type operator, space of holomorphic functions.
@article{UFA_2022_14_3_a5,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {Hadamard type operators},
     journal = {Ufa mathematical journal},
     pages = {51--59},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a5/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - Hadamard type operators
JO  - Ufa mathematical journal
PY  - 2022
SP  - 51
EP  - 59
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a5/
LA  - en
ID  - UFA_2022_14_3_a5
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T Hadamard type operators
%J Ufa mathematical journal
%D 2022
%P 51-59
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a5/
%G en
%F UFA_2022_14_3_a5
O. A. Ivanova; S. N. Melikhov. Hadamard type operators. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 51-59. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a5/

[1] L.A. Ajzenberg, “The general form of a continuous linear functional in spaces of functions that are holomorphic in convex domains of $\mathbb{C}^N$”, Sov. Math. Dokl, 7 (1966), 198-202 | MR | Zbl

[2] A.V. Bratishchev, “Linear operators whose symbols are functions of the products of their arguments”, Dokl. Math., 59:2 (1999), 177–180 | MR | Zbl

[3] A.V. Bratishchev, “On Gelfond-Leontiev operators of generalized differentiation”, J. Math. Sci., 252:3 (2021), 319–344 | DOI

[4] V.S. Vladimirov, Methods of theory of functions of many complex variables, Nauka, M., 1964 (in Russian) | MR

[5] O.A. Ivanova, S.N. Melikhov, “Operators of almost Hadamard-type and the Hardy-Littlewood operator in the space of entire functions of several complex variables”, Math. Notes, 110:1 (2021), 61–71 | DOI | DOI | MR

[6] S.S. Linchuk, “Diagonal operators in spaces of analytic functions and their applications”, Topical issues in theory of functions, Rostov State Univ. Publ., Rostov-on-Don, 1987, 118–121 (in Russian) | MR

[7] V.V. Napalkov, Convolution equations in multidimensional spaces, Nauka, M., 1982 (in Russian)

[8] A.P. Robertson, W.J. Robertson, Topological vector spaces, Cambridge Univ. Press, Cambridge, 1964 | MR | MR | Zbl

[9] P. Domański, M. Langenbruch, “Representation of multipliers on spaces of real analytic functions”, Analysis, 32 (2012), 137–162 | DOI | MR | Zbl

[10] P. Domański, M. Langenbruch, “Algebra of multipliers on the space of real analytic functions of one variable”, Studia Math., 212 (2012), 155–171 | DOI | MR | Zbl

[11] P. Domański, M. Langenbruch, “Hadamard multipliers on spaces of real analytic functions”, Adv. Math., 240 (2013), 575–612 | DOI | MR | Zbl

[12] P. Domański, M. Langenbruch, “Multiplier projections on spaces of real analytic functions in several variables”, Comp. Var. Elliptic Equ., 62 (2017), 241-268 | DOI | MR | Zbl

[13] P. Domański, M. Langenbruch, “Surjectivity of Hadamard type operators on spaces of smooth functions”, Revista de la Real Acad. de Ciencias Ex. Fis. y Naturales Serie A-Mat, 113 (2019), 1625–1676 | DOI | MR | Zbl

[14] P. Domański, M. Langenbruch, D. Vogt, “Hadamard type operators on spaces of real analytic functions in several variables”, J. Funct. Anal., 269 (2015), 3868–3913 | DOI | MR | Zbl

[15] L. Hörmander, Notions of Convexity, Birkhäuser, 1994 | MR | Zbl

[16] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 191:1–2 (1953), 30–49 | DOI | MR | Zbl

[17] A. Martineau, “Sur la topologie des espaces de fonctions holomorphes”, Math. Annalen, 163:1 (1966), 62–88 | DOI | MR | Zbl

[18] M. Trybula, “Hadamard multipliers on spaces of holomorphic functions”, Int. Equ. Oper. Theory, 88 (2015), 249–268 | DOI | MR

[19] D. Vogt, “Hadamard type operators on spaces of smooth functions”, Math. Nachr., 288 (2015), 353–361 | DOI | MR | Zbl

[20] D. Vogt, “Hadamard operators on $\mathcal D'(\mathbb R^N)$”, Studia Math., 237 (2017), 137–152 | DOI | MR | Zbl

[21] D. Vogt, “Hadamard operators on $\mathcal D'(\Omega)$”, Math. Nachr., 290 (2017), 1374–1380 | DOI | MR | Zbl

[22] D. Vogt, “$\mathcal E'$ as an algebra by multiplicative convolution”, Funct. Approx. Comment. Math., 59:1 (2018), 117–128 | DOI | MR | Zbl

[23] D. Vogt, “Hadamard type operators on temperate distributions”, J. Math. Anal. Appl., 481:2 (2020), 123499 | DOI | MR | Zbl