Application of generating functions to problems of random walk
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 33-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem on determining the first hit time of the positive semi-axis under a homogenous discrete integer random walk on a line. More precisely, the object of our study is the graph of the generating function of the mentioned random variable. For the random walk with the maximal positive increment $1$, we obtain the equation on the implicit generating function, which implies the rationality of the inverse generating function. In this case, we find the mathematical expectation and dispersion for the first hit time of a positive semi-axis under a homogenous discrete integer random walk on a line. We describe a general method for deriving systems of equations for the first hit time of a positive semi-axis under a homogenous discrete integer random walk on a line. For a random walk with increments $-1$, $0$, $1$, $2$ we derive an algebraic equation for the implicit generating function. We prove that a corresponding planar algebraic curve containing the graph of generating function is rational. We formulate and prove several general properties of the generating function the first hit time of the positive semi-axis under a homogenous discrete integer random walk on a line.
Keywords: generating function, random walk.
@article{UFA_2022_14_3_a3,
     author = {S. V. Grishin},
     title = {Application of generating functions to problems of random walk},
     journal = {Ufa mathematical journal},
     pages = {33--40},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a3/}
}
TY  - JOUR
AU  - S. V. Grishin
TI  - Application of generating functions to problems of random walk
JO  - Ufa mathematical journal
PY  - 2022
SP  - 33
EP  - 40
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a3/
LA  - en
ID  - UFA_2022_14_3_a3
ER  - 
%0 Journal Article
%A S. V. Grishin
%T Application of generating functions to problems of random walk
%J Ufa mathematical journal
%D 2022
%P 33-40
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a3/
%G en
%F UFA_2022_14_3_a3
S. V. Grishin. Application of generating functions to problems of random walk. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 33-40. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a3/

[1] W. Feller, An introduction to probability theory and its applications, v. I, John Wiley Sons, New York, 1950 | MR | MR | Zbl

[2] J. von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton University Press, Princeton, New Jersey, 1944 | MR | MR | Zbl

[3] T. Shelling, The Strategy of Conflict, Harvard University, 2005

[4] E.M. Lifshitz, L.P. Pitaevskii, Physical kinetics, Pergamon Press, Oxford, 1981 | MR

[5] A.D. Ventsel, A course in the theory of stochastic processes, McGraw Hill, New York, 1981 | MR

[6] B.V. Gnedenko, Theory of probability, Gordon and Breach, Newark, New Jersey, 1997 | MR | Zbl

[7] I.I. Gihman, A.V. Skorohod, The theory of stochastic processes, Springer, Berlin, 1983 | MR | Zbl

[8] N.P. Semerikova, A.A. Dubkov. A.A. Kharcheva, Series of analytic functions, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, 2016

[9] E. Montroll, G. Weiss, “Random Walks on Lattices”, J. Math. Phys., 6:2 (1965) | DOI | MR | Zbl

[10] S. Asmussen, H. Albrecher, Ruin Probabilities, World Scientific Publishing Co. Pte. Ltd., 2010 | MR | Zbl

[11] A. Branquinho, A. Foulquie-Moreno, M. Manas, C. Alvarez-Fernandes, J.E. Fernandes-Dias, Multiple Orthogonal Polynomials and Random Walks, 2021, arXiv: 2103.13715 | MR

[12] O. Busani, T. Seppalainen, Bound of a Running Maximum of a Random Walk with Small Drift, 2020, arXiv: 2010.08767 | MR

[13] P. Mounaix, S.N. Majumdar, G. Schehr, “Statistic of the Number of Records for Random Walks and Levi Flights on a 1D Lattice”, J. Phys. A: Math. Theor., 53 (2020), 415003 | DOI | MR

[14] N.R. Beaton, A.L. Owczarek, A. Rechnitzer, “Exact Solution of some Quarter Plane Walks with Interacting Boundaries”, The Electronic Journal of Combinatorics, 26:3 (2019), 38 pp. | MR

[15] A. Di Crescenzo, C. Macci, B. Martinucci, S. Spina, “Analysis of Ran$\-$dom Walks on a Hexagonal Lattice”, IMA Journal of Applied Mathematics, 84:6 (2019), 1061–1081 | MR | Zbl

[16] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “A Multidimensional Analogue of the Arcsine Law for the Number of Positive Terms in a Random Walk”, Bernoulli, 25:1 (2019), 521–548 | DOI | MR | Zbl

[17] D. Hoef, “Distribution of the k-Multiple Point Range in the Closed Simple Random Walk”, Markov Process. Related Fields, 12 (2006), 537–560 | MR

[18] K. Yamamoto, “Hypergeometric Solution to a Gambler's Ruin Problem with a Nonzero Halting Probability”, International Journal of Statistical Mechanics, 2013, 831390, 9 pp.

[19] H. Wang., “On Total Progeny of Multitype Galton-Watson Process and the First Passage Time of Random Walk with Bounded Jumps”, Acta Mathematica Sinica, English Series, 30:12 (2014), 2161–2172 | DOI | MR | Zbl

[20] M. Reid, Undegraduate algebraic geometry, Cambridge Univ. Press, 1991 | MR