Maximal term of Dirichlet series
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem on equivalence of logarithms of maximal terms in the Hadamard composition (modified series) $ \sum \limits_{n} a_nb_ne^{\lambda_nz}$ of the Dirichlet series $\sum \limits_{n} a_ne^{\lambda_nz} $ and $\sum \limits_{n} b_ne^{\lambda_nz}$ with positive exponents, the convergence domain of which is a half-plane. A similar problem for entire Dirichlet series was first studied by A.M. Gaisin in 2003 and there was obtained a criterion of the stability of the maximal term $\mu(\sigma)=\max \limits_{n\geq 1}\{{\vert a_n\vert} e^{\lambda_n\sigma}\}. $ This result turned out to be useful in studying asymptotic properties of the Dirichlet series on arbitrary curves going to infinity, namely, in the proof of the famous Pólya conjecture.Both in the case of entire Dirichlet series and ones converging only in the half-plane, a key role in such problems is played by Leontiev formulae for the coefficients. The functions of the corresponding biorthogonal system contains a factor, which the derivative of a characteristic function at the points $\lambda_n$, $n\geq 1$. This fact naturally leads to the considered here problem on the stability of the maximal term.We obtain a criterion ensuring the equivalence of logarithm of the maximal term in the Dirichlet series, the convergence domain of which is a half-plane, to the logarithm of the maximal term of the modified series on an asymptotic set.
Keywords: Dirichlet series, convergence half-plane, asymptotic set.
Mots-clés : maximal term, Hadamard composition
@article{UFA_2022_14_3_a2,
     author = {A. M. Gaisin and T. I. Belous},
     title = {Maximal term of {Dirichlet} series},
     journal = {Ufa mathematical journal},
     pages = {22--32},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a2/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - T. I. Belous
TI  - Maximal term of Dirichlet series
JO  - Ufa mathematical journal
PY  - 2022
SP  - 22
EP  - 32
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a2/
LA  - en
ID  - UFA_2022_14_3_a2
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A T. I. Belous
%T Maximal term of Dirichlet series
%J Ufa mathematical journal
%D 2022
%P 22-32
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a2/
%G en
%F UFA_2022_14_3_a2
A. M. Gaisin; T. I. Belous. Maximal term of Dirichlet series. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 22-32. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a2/

[1] A.M. Gaisin, “Estimates of the growth and decrease on curves of an entire function of infinite order”, Sb. Math., 194:8 (2003), 1167–1194 | DOI | DOI | MR | Zbl

[2] A.M. Gaisin, T.I. Belous, “$B$-stability of the maximal term of the Hadamard composition of two Dirichlet series”, Siberian Math. J., 43:6, 1027–1038 (2002) | DOI | MR | MR | Zbl

[3] A.M. Gaisin, T.I. Belous, “Estimation over curves of the functions given by Dirichlet series on a half-plane”, Siberian Math. J., 44:1 (2003), 22–36 | DOI | MR | Zbl

[4] A.F. Leontiev, Exponential series, Nauka, M., 1976 | MR

[5] A.M. Gaisin, “Behavior of the logarithm of the modulus value of the sum of a Dirichlet series converging in a half-plane”, Russ. Acad. Sci. Izv. Math., 45:1 (1995), 175–186 | MR

[6] G.G. Tsegelik, “Properties of the Newton majorant and diagram of a function analytic in the disk”, Ukr. Math. J., 29:4 (1977), 431–433 | DOI | MR | Zbl

[7] A.A. Goldberg, I.V. Ostrovskii, Value distribution of meromorphic functions, Amer. Math. Soc., Providence, RI, 2008 | MR | MR | Zbl